
CNN Mixture-of-Depths

Rinor Cakaj1,2, Jens Mehnert1, and Bin Yang2

1 Robert Bosch GmbH, Daimlerstrasse 6, 71229 Leonberg, Germany
{Rinor.Cakaj,JensEricMarkus.Mehnert}@de.bosch.com

2 University of Stuttgart, Pfaffenwaldring 47, 70550 Stuttgart, Germany
bin.yang@iss.uni-stuttgart.de

Abstract. We introduce Mixture-of-Depths (MoD) for Convolutional
Neural Networks (CNNs), a novel approach that enhances the compu-
tational efficiency of CNNs by selectively processing channels based on
their relevance to the current prediction. This method optimizes compu-
tational resources by dynamically selecting key channels in feature maps
for focused processing within the convolutional blocks (Conv-Blocks),
while skipping less relevant channels. Unlike conditional computation
methods that require dynamic computation graphs, CNN MoD uses a
static computation graph with fixed tensor sizes which improve hard-
ware efficiency. It speeds up the training and inference processes without
the need for customized CUDA kernels, unique loss functions, or fine-
tuning. CNN MoD either matches the performance of traditional CNNs
with reduced inference times, GMACs, and parameters, or exceeds their
performance while maintaining similar inference times, GMACs, and pa-
rameters. For example, on ImageNet, ResNet86-MoD exceeds the perfor-
mance of the standard ResNet50 by 0.45% with a 6% speedup on CPU
and 5% on GPU. Moreover, ResNet75-MoD achieves the same perfor-
mance as ResNet50 with a 25% speedup on CPU and 15% on GPU.

Keywords: CNN, Mixture-of-Depths, Computational Efficiency, Infer-
ence Speed

1 Introduction

Over recent years, convolutional neural networks (CNNs) have demonstrated sig-
nificant advancements in a variety of computer vision applications, such as im-
age recognition [11,34], object detection [28,29], and image segmentation [23,43].
Despite their remarkable performance, CNNs often require substantial computa-
tional power and extensive memory usage, posing considerable challenges when
deploying advanced models on devices with limited computational resources [19].

Pruning techniques are widely utilized to reduce the model size and compu-
tational demands of CNNs by removing redundant weights or filters according to
established criteria [12–14, 20, 24, 40, 44, 45]. However, these methods uniformly
process all inputs, failing to adjust for the varying complexities of different in-
puts, which can lead to performance decreases [19].

2 Cakaj, Mehnert, Yang.

Channel-
Selector

Conv-Block

Fusion

Compute channel
importance and select

top k Channels

Apply Conv-Block to
a subset of the

orignal Feature Map

Add the processed
Channels to the

first k Channels of the
original Feature Map

Fig. 1: Illustration of the CNN MoD mechanism, which starts with the Channel Selec-
tor module. This module computes the importance scores of each channel in the input
feature map, X P RCˆHˆW , and selects the top k channels for focussed processing in
the Conv-Block. These selected channels are then processed by a Conv-Block designed
to operate on a reduced dimension, X̂ P RkˆHˆW , enhancing computational efficiency.
The processed channels are added to the first k channels of the original feature map
through a fusion operation, instead of being added back to their original positions.
This selective reintegration of refined channels with the unprocessed channels helps to
preserve the dimensions of the original feature map (X P RCˆHˆW).

Dynamic computing, or conditional computation, adapts computational re-
sources to the complexity of inputs to enhance efficiency [19,36,37]. However, the
integration of these methods into hardware is challenging due to their reliance on
dynamic computation graphs, which are often incompatible with systems opti-
mized for static computation workflows [8,37]. For instance, Wu et al. [41] report
increased processing times when layers are conditionally executed via a separate
policy network. Despite theoretical reductions in computational demands, practi-
cal gains on hardware like GPUs or FPGAs are limited, as non-uniform tasks can
interfere with the efficiencies of standard convolution operations [18, 33]. More-
over, Ma et al. [25] show that floating point operations (FLOPS) are insufficient
for estimating inference speed, as they often exclude element-wise operations like
activation functions, summations, and pooling.

To combine the performance benefits of dynamic computing with the oper-
ational efficiency of static computation graphs, we present the CNN Mixture-
of-Depths (MoD), inspired by the Mixture-of-Depths approach for Transform-
ers [27]. This innovative approach combines the performance benefits of dynamic
computing with the operational efficiency of static computation graphs. The fun-
damental principle of CNN MoD is that only a selected subset of channels within
the feature maps is essential for effective convolutional processing at given lay-

CNN MoD 3

ers in the network. By focusing on these essential channels, CNN MoD boosts
computational efficiency without reducing network performance.

The MoD mechanism, shown in Figure 1, enhances CNN feature map pro-
cessing by dynamically selecting the most important channels for focused com-
putation within Conv-Blocks. MoD begins with the Channel Selector, illus-
trated in Figure 2, which is designed similarly to the Squeeze-and-Remember
block [15]. It evaluates the importance of each channel within the input fea-
ture map X P RCˆHˆW . Adaptive average pooling first reduces each channel
to X̃ P RCˆ1ˆ1, which is then processed by a two-layer fully connected neural
network with a bottleneck design. A sigmoid activation function generates scores
indicating the importance of each channel.

Following this, the Channel Selector uses a top k selection mechanism to
identify the k most crucial channels based on the computed importance scores.
These channels are sent to the Conv-Block, designed to operate on the reduced
dimension X̂ P RkˆHˆW , thus improving computational efficiency. To ensure
that the gradients from the processed output X̂ effectively optimize the channel
selection process, the processed channels are scaled by their respective impor-
tance scores. This allows the gradients to flow back to the Channel Selector,
enabling the learning of channel importance throughout training.

The final step involves a fusion operation, in which the processed channels
are added to the first k channels of the original feature map. This fusion not only
preserves the original dimensions of the feature map but also enhances feature
representation by combining processed and unprocessed channels.

The reduction in the number of processed channels within Conv-Blocks is
controlled by a hyperparameter c ě 1, where k “ tCc u defines the number of
channels to process. Here, C is the total number of input channels in the Conv-
Block. For example, in a typical ResNet [11] architecture, a Bottleneck block
that usually processes 1024 channels will only process 16 channels (k “ 16)
when c “ 64. This selective processing significantly reduces the computational
load by focusing on a smaller subset of channels. Additionally, the sizes of the
kernels within the Conv-Blocks are adjusted to match the reduced number of
input channels, as detailed in Section 3.2.

Empirical evaluations indicate that the optimal integration of MoD within
the CNN architecture involves alternating them with standard Conv-Blocks. In
architectures like ResNets [11] or MobileNetV2 [31], Conv-Blocks are organized
into modules containing multiple Conv-Blocks of the same type (i.e., with the
same number of output channels). Each module begins with a standard block,
and is then followed by an MoD Block. This alternating arrangement is based
on the principles of the Mixture-of-Depths for Transformers [27]. This does not
imply adding additional MoD Blocks to the existing sequence. Instead, every
second Conv-Block in the original architecture is replaced by a MoD Block,
ensuring the overall depth of the architecture remains unchanged.

CNN MoD achieves performance comparable to traditional CNNs but with
reduced inference times, GMACs, and parameters, or it surpasses them while
maintaining similar inference times, GMACs, and parameters. On the ImageNet

4 Cakaj, Mehnert, Yang.

dataset [30], our ResNet75-MoD matches the accuracy of the standard ResNet50
[11] and provides speed-ups of 15% on GPU and 25% on CPU. Similar results
can also be achieved in semantic segmentation and object detection tasks, as
detailed in Section 4.

2 Related Work

This section reviews two strategies for enhancing CNN computational efficiency:
static pruning and dynamic computing. At the end, we highlight the advantages
of our CNN MoD approach, which combines the benefits of both strategies,
offering improvements over traditional methods.

2.1 Static Pruning

Static pruning techniques aim to reduce the computational burden of CNNs
by eliminating redundant model parameters. Early work in this area primar-
ily targeted weight pruning, which selectively removes individual weights that
have little effect on the model’s output [9, 10, 39]. However, these methods tend
to create irregular sparsity patterns that do not align well with hardware opti-
mizations [19]. More recently, structured pruning approaches like channel prun-
ing have gained prominence. These methods offer a more hardware-compatible
form of sparsity by discarding entire channels based on their assessed impor-
tance [13, 21]. For example, FPGM, or Filter Pruning via Geometric Median,
identifies and removes filters that are closest to the geometric median within
a layer, targeting those considered less crucial [13]. Similarly, HRank evaluates
filters based on the rank of their generated feature maps, pruning those that
contribute the least to the output’s information content [21].

Despite their benefits, these static pruning methods permanently remove
computations, potentially reducing the model’s capacity to represent complex
features. This permanent reduction can be particularly limiting for complex im-
ages that may require more detailed processing, suggesting that a one-size-fits-all
approach to pruning might be suboptimal for diverse real-world applications. Ad-
ditionally, these methods often require fine-tuning or specialized loss functions,
further complicating their implementation.

2.2 Dynamic Computing

Dynamic computing, or conditional computation, dynamically adjusts compu-
tational resources according to the complexity of the input, potentially main-
taining high model accuracy while reducing computation. Architectures like
BranchyNet [35] and MSDNet [16] implement early exits for simpler inputs to
decrease average computational load. Furthermore, policy-driven methods such
as BlockDrop [41] and GaterNet [3] dynamically decide which network blocks to
execute using a policy network, which adapts in real-time to the input.

CNN MoD 5

Further innovations in dynamic computing utilize gating functions to enable
selective processing of Conv-Blocks. SkipNet [38] and ConvNet-AIG [36] dynam-
ically skip the processing of whole Conv-Blocks based on the observation that
individual blocks can be removed without interfering with other blocks in the
residual networks [11]. Some methods [6,37,42] exploit spatial sparsity to reduce
the computations, e.g. Verelst et al. [37] learn a pixel-wise execution mask for
each block and only calculate on those specified locations. Dynamic Dual Gat-
ing [19] introduces another layer of complexity by identifying informative features
along spatial and channel dimensions, allowing the model to skip unimportant
regions and channels dynamically during inference.

Many works on conditional execution primarily highlight reductions in the-
oretical complexity. However, in practical settings, the application of these dy-
namic methods often confronts hardware limitations due to their dependency
on dynamic computation graphs. This reliance can lead to inefficiencies and
extended execution times on hardware systems that are optimized for static
computations [8, 18,33,41].

Recently, Raposo et al. [27] introduced the Mixture-of-Depths for Trans-
formers, a method that selectively processes tokens within Transformer blocks
to effectively reduce computational load. This innovative approach inspired us
for our CNN MoD approach.

2.3 CNN MoD: Combining Static and Dynamic Advantages

The CNN MoD approach combines the benefits of static pruning and dynamic
computing within a unified framework. Below are the key advantages of our
approach:

– Static Computation Graph: CNN MoD retains a static computation
graph, which enhances both training and inference time.

– No Custom Requirements: Does not require customized CUDA kernels,
additional loss functions, or fine-tuning.

– Dynamic Resource Allocation: Dynamically allocates computational re-
sources to channels based on their importance, effectively optimizing training
and inference speeds.

3 Method: CNN Mixture-of-Depths

The term “Mixture-of-Depths” in our approach refers to the selective process-
ing strategy where not every channel is processed in every convolutional block
within the same module, resulting in varied processing depths. This strategy
allows for some channels to be processed more frequently than others within
the same module, thereby optimizing computational resources and enhancing
feature extraction efficiency. This section presents the CNN Mixture-of-Depths
approach. It consists of three main components:

6 Cakaj, Mehnert, Yang.

FCN with Sigmoid
Activation

Adaptive Average
Pooling 2D

Select top k
Channels

Fig. 2: Illustration of the Channel Selection Process in MoD. The process begins with
an input tensor X P RCˆHˆW , which undergoes adaptive average pooling to reduce
spatial dimensions to 1 ˆ 1, preserving channel information. The pooled output is
processed through a two-layer fully connected network with a reduction factor (r “ 16),
followed by a sigmoid activation to generate channel-wise scores. These scores are used
to select the top k channels. This forms a subset of the original tensor with reduced
channel dimension but original spatial dimensions.

1. Channel Selector: This component selects the top k most important chan-
nels from the input feature map based on their relevance to the current pre-
diction. This selection helps to focus computational resources effectively by
processing only those channels that are crucial for the current task.

2. Convolutional Block: The selected channels are then processed in a Conv-
Block. This block can be adapted from existing architectures such as ResNets
[11] or ConvNext [22] and is designed to enhance the features of the selected
channels. To ensure that the Channel Selector is optimized during training,
the processed feature maps are multiplied by their importance scores at the
end of this block.

3. Fusion Operation: After processing in the Conv-Block, the enhanced chan-
nels are integrated back into the original feature map. This is done by adding
the processed channels to the first k channels of the feature map, which is
then passed on to the subsequent layer without additional adjustments. This
step ensures that the processed features are preserved and that the feature
map maintains its original dimensions for further processing.

3.1 Channel Selector

Figure 2 shows how the Channel Selector dynamically selects the most significant
channels for processing in the Conv-Block. It operates in two main stages:

1. Adaptive Channel Importance Computation: Initially, the Channel
Selector compresses the input feature map X P RCˆHˆW using adaptive
average pooling, reducing its dimension to X̃ P RCˆ1ˆ1. This compressed
feature map is processed through a two-layer fully connected network with
a bottleneck design, set to a ratio r “ 16, and concludes with a sigmoid
activation to create a score vector s P RC . Each element of s quantifies the
importance of the corresponding channel.

CNN MoD 7

2. Top-k Channel Selection and Routing: Utilizing the importance scores
s, the Channel Selector selects the top k channels. These selected channels
are routed to the Conv-Block for processing. The original feature map X is
routed around the Conv-Block to the fusion process described in Section 3.3.

This selection process enables the Channel Selector to effectively manage
computational resources while keeping a static computational graph. This facil-
itates the dynamic selection of channels.

3.2 Channel Processing Dynamics

After the Channel Selector selects the top k channels, they are processed within
the Conv-Block. This block is adaptable from architectures such as ResNets [11]
or ConvNext [22], and is designed to process a reduced number of channels.

The number of channels k processed in each Conv-Block is determined by the
formula k “ tCc u, where C represents the total input channels of the block, and c
is a hyperparameter determining the extent of channel reduction. For instance, in
a standard ResNet [11] Bottleneck block that typically processes 1024 channels,
setting c “ 64 reduces the processing to only 16 channels (k “ 16). Unlike the
standard bottleneck flow where channels transition from 1024 to 256 and back
to 1024, in a MoD Bottleneck block, the channel dimensions are significantly
reduced from 16 to 4 and then back to 16, focusing computational efforts on the
most essential features and enhancing efficiency. In our empirical investigations,
we found that the hyperparameter c should be set to the maximal number of
input channels in the first Conv-Block and remain the same in every MoD Block
throughout the CNN. For example, c “ 64 for ResNet [11] and c “ 16 for
MobileNetV2 [31].

The final step in the Conv-Block involves multiplying the processed channels
with the importance scores obtained from the Adaptive Channel Importance
Computation. This step ensures that gradients are effectively propagated back
to the Channel Selector during training, which is needed for optimizing the
selection mechanism.

3.3 Fusion Mechanism

The Fusion Mechanism combines processed and unprocessed channels to main-
tain the dimensionality required for subsequent convolutional operations. This
approach ensures that the remaining non-selected channels, which contain use-
ful features for later stages, are preserved, thereby maintaining a comprehensive
feature set necessary for the model’s performance.

Consider the original input feature map X with dimensions RCˆHˆW , where
C represents the total number of channels, and H and W denote the height and
width of the feature map, respectively. The processed feature map X̂, resulting
from the adapted Conv-Block applied to the selected top k channels, has dimen-
sions RkˆHˆW . To integrate X̂ with X, the fusion operation is performed as

8 Cakaj, Mehnert, Yang.

follows:

X̄r:, : k, :s “ X̂ ` Xr:, : k, :s, (1)
X̄r:, k :, :s “ Xr:, k :, :s. (2)

where (1) adds processed features to the first k channels of X, and (2) maintains
the remaining unprocessed channels. This formula confirms that X̄, the feature
map after fusion, has the same number of channels C as the original input X,
preserving the dimensions needed for subsequent layers.

In our experiments, we tested various strategies for integrating the processed
channels back into the feature map X. These strategies included adding the
processed channels back to their original positions and completely replacing the
original channels with the processed ones. However, empirical results did not
show improvements with either method. It seems beneficial for the network’s
performance to consistently use the same positions within the feature maps for
processed information. This observation is confirmed by experiments where the
processed channels were added to the last k channels of the feature map X,
yielding results comparable to those achieved when added to the first k channels
(see Appendix A.5).

3.4 Integration in CNN Architecture

MoD can be integrated into various CNN architectures, such as ResNets [11],
ConvNext [22], VGG [32], and MobileNetV2 [31]. These architectures are orga-
nized into modules containing multiple Conv-Blocks of the same type (i.e., with
the same number of output channels). Through our experiments, we found out
that alternating MoD Blocks with standard Conv-Blocks in each module is the
most effective integration method. We also explored using MoD Blocks in every
block and selectively within specific modules, however, the alternating strategy
proved to be the most effective approach. It is important to note that MoD
Blocks replace every second Conv-Block, maintaining the original architecture’s
depth (e.g., 50 layers in a ResNet50 [11]). Each module starts with a standard
block, such as a BasicBlock [11], followed by an MoD Block. This alternating
pattern indicates that the network can handle substantial capacity reductions,
provided that there are regular intervals of full-capacity convolutions. Further-
more, this method ensures that MoD Blocks do not interfere with the spatial
dimension-reducing convolutions that typically occur in the first block of each
module.

4 Experiments

This section evaluates the CNN Mixture-of-Depths on various tasks, including
supervised image recognition on CIFAR-10/100 [17] and ImageNet [30], semantic
segmentation on Cityscapes [5], and object detection on Pascal VOC [7]. Results
for CIFAR-10/100 are detailed in Appendix D due to space constraints.

CNN MoD 9

3 4 5 6 7 8
GMAC

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

78.0

To
p

1
Ac

cu
ra

cy
 (%

)

ResNet152-MoD ResNet101

ResNet101-MoD

ResNet86-MoD

ResNet75-MoD ResNet50

ResNet50-MoD

ResNet34

Top 1 Accuracy vs GMAC

MoD Models
Standard ResNet Models

(a) Top-1 Accuracy vs GMAC

20 25 30 35 40 45
Parameters (Millions)

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

78.0

To
p

1
Ac

cu
ra

cy
 (%

)

ResNet152-MoD ResNet101

ResNet101-MoD

ResNet86-MoD

ResNet75-MoD ResNet50

ResNet50-MoD

ResNet34

Top 1 Accuracy vs Parameters (Millions)

MoD Models
Standard ResNet Models

(b) Top-1 Accuracy vs Parameters

100 120 140 160 180 200 220 240
CPU Inference Time (ms)

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

78.0

To
p

1
Ac

cu
ra

cy
 (%

)

ResNet152-MoD ResNet101

ResNet101-MoD
ResNet86-MoD

ResNet75-MoD ResNet50

ResNet50-MoD

ResNet34

Top 1 Accuracy vs CPU Inference Time (ms)

MoD Models
Standard ResNet Models

(c) Top-1 Accuracy vs CPU Inference
Time

1.5 2.0 2.5 3.0 3.5 4.0
GPU Inference Time (ms)

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

78.0

To
p

1
Ac

cu
ra

cy
 (%

)

ResNet152-MoD ResNet101

ResNet101-MoD

ResNet86-MoD

ResNet75-MoD ResNet50

ResNet50-MoD

ResNet34

Top 1 Accuracy vs GPU Inference Time (ms)

MoD Models
Standard ResNet Models

(d) Top-1 Accuracy vs GPU Inference
Time

Fig. 3: ResNet MoD models outperform standard ResNets under similar computational
constraints, as shown across four panels. Panel (a) shows the higher accuracy per
GMAC, highlighting better computational efficiency, while panel (b) illustrates the
improved parameter efficiency. Panels (c) and (d) demonstrate ResNet MoD’s superior
Top-1 accuracy with comparable or faster inference times on CPU and GPU.

Performance benchmarks were carried out on both GPU and CPU platforms
to evaluate the running times. These measurements were taken using the Timer
and Compare functions from the torch.utils.benchmark package, with tests
performed on an Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz and a NVIDIA
Quadro RTX 3000 GPU.

4.1 Image Recognition on ImageNet

We evaluated the CNN MoD on the ImageNet dataset [30], comprising 1.2 mil-
lion training images, 50,000 validation images, and 150,000 test images across
1,000 categories. The experiments were conducted using three different random
seeds to ensure the robustness and reproducibility of the results. Implementation
details and further results are provided in Appendix A.

Table 1 presents the comparative results for various network configurations,
highlighting our approach against advanced pruning and dynamic computing
strategies. This includes comparisons with established methods such as DGNet
[19], Batch-Shaping [1], ConvNet-AIG [36], HRANK [21], FPGM [13], and Dyn-
Conv [37]. We report for all models the top-1 classification accuracy on the
validation set, along with attributes such as no requirement for fine-tuning (No

10 Cakaj, Mehnert, Yang.

FT), simple training mechanisms (Simple Train.), the availability of a GPU im-
plementation (GPU Impl.), a static computational graph (Static Graph), and
enhanced training speed (Faster Train.). Here, ”Simple Training“ indicates that
no customized loss functions or complex hyperparameter tuning is required, and
”Faster Training“ is determined by measuring the relative training time com-
pared to standard models.

The MoD Blocks reduce the computational load in every second block, al-
lowing the construction of deeper architectures with the computational costs
comparable to less deep standard models. Specifically, in the ResNet86-MoD,
the number of Conv-Blocks in the third layer is 18, compared to just 6 blocks
in the standard ResNet50, while maintaining nearly the same GMACs, param-
eters, and inference times. This expansion is enabled by the MoD Blocks that
process fewer channels. Similarly, the ResNet75-MoD increases the number of
Conv-Blocks in the third layer to 14. For further details, see Appendix A.2.

As described in Section 3.2, the value of c in all MoD Blocks is set to the
maximum number of input channels in the first Conv-Block. For instance, c “ 64
for ResNet [11] and c “ 16 for MobileNetV2 [31].

The MoD models achieve performances comparable to traditional CNNs but
with reduced inference times or they surpass them while maintaining similar in-
ference times. For instance, our ResNet75-MoD matches the performance of the
standard ResNet50 and achieves an 15% speed-up on GPU and 25% on CPU.
Similarly, the ResNet50-MoD model significantly enhances processing speeds,
achieving a 27% improvement on CPU and 48% on GPU, with a slight impact on
accuracy. Furthermore, the ResNet86-MoD model improves accuracy by 0.45%
with a speedup of 6% on CPU and 5% on GPU. A test variant, MoD50 rand, em-
ploying randomized channel selection, exhibited a performance decline of about
0.8%. This highlights the significance of strategic channel selection in our MoD
approach. Figure 3 presents a comparative performance analysis of ResNet MoD
models against standard ResNets for different computational metrics.

Dynamic approaches like DGNet [19] and ConvNet-AIG [36], which lack data
on real-world inference speedup, show simulated GMAC reductions only, indi-
cating potential discrepancies in practical applications.

The results presented in Table 2 demonstrate the effectiveness of applying the
MoD approach to MobileNetV2 architectures. The MobileNetV2-MoD-L model,
with a deeper configuration (see Appendix A.3), maintains nearly the same Top-1
Accuracy as the standard MobileNetV2, while achieving a 11% speed-up on CPU
and 10% on GPU. The standard MobileNetV2-MoD, despite a slight decrease
in accuracy, offers a significant speed-up of 43% on CPU and 39% on GPU,
illustrating the benefits of the MoD approach in balancing performance with
computational efficiency.

4.2 Semantic Segmentation on Cityscapes

For semantic segmentation, we utilized the Cityscapes dataset [5], which com-
prises high-quality, finely annotated images from 50 European cities, divided into
19 semantic classes (2,975 training, 500 validation, and 1,525 test images). The

CNN MoD 11

Table 1: This table presents the MoD models against other dynamic pruning and
computational efficiency strategies. The table evaluates each method based on Top-1
Accuracy (Acc %), computational complexity (GMAC), model size (Params, in mil-
lions - M) and Speed-up for CPU and GPU (SpeedUp CPU, SpeedUp GPU). Models
abbreviated as “R50” refer to ResNet50 architectures. Notably, only MoD models in-
corporate all the attributes such as No Fine-Tuning (No FT), Simple Training (Simple
Train.), GPU Implementation (GPU Impl.), a Static Computational Graph (Static
Graph), and Enhanced Training Speed (Faster Train.).

Method No Simple GPU Static Faster Top1 GMAC Params Inference (ms) SpeedUp

FT Train. Impl. Graph Train. Acc (%) (M) CPU GPU CPU GPU

ResNet152-MoD ✓ ✓ ✓ ✓ ✓ 77.81 6.34 37.46 208.80 3.82 1.20 1.12

ResNet101 77.81 7.80 44.55 251.05 4.28 1.00 1.00

ResNet101-MoD ✓ ✓ ✓ ✓ ✓ 77.08 4.58 29.21 162.03 2.73 1.55 1.57

ResNet86-MoD ✓ ✓ ✓ ✓ ✓ 76.72 3.92 25.60 150.96 2.40 1.06 1.05

R50-DGNet [19] ✓ ✗ ✗ ✗ ✗ 76.41 1.65* 29.34 —1 —1 — —

ResNet75-MoD ✓ ✓ ✓ ✓ ✓ 76.27 3.48 23.10 128.90 2.19 1.25 1.15

ResNet50 76.25 4.13 25.56 160.66 2.52 1.00 1.00

R50-Batch-Shaping [1] ✓ ✗ ✗ ✗ ✗ 75.70 2.07* 15.31 — — 1.312 —

R50-ConvNet-AIG [36] ✓ ✗ ✗ ✗ ✗ 75.45 2.59* 26.56 — — 1.292 —

R50-HRANK [21] ✗ ✗ ✓ ✓ ✗ 74.98 2.30 16.15 —3 —3 — —

ResNet50-MoD ✓ ✓ ✓ ✓ ✓ 74.79 2.60 18.11 108.74 1.75 1.48 1.44

R50-FPGM [13] ✗ ✗ ✓ ✓ ✗ 74.83 1.91 — — — — 1.614

R50-DynConv [37] ✓ ✗ ✓ ✗ ✗ 74.40 2.25 25.56 — — — —5

R50-FPGM [13] ✓ ✗ ✓ ✓ ✗ 74.13 1.91 — — — — 1.614

MoD50 rand. ✓ ✓ ✓ ✓ ✓ 74.02 2.59 17.11 100.06 1.43 1.77 1.43
1 No CPU/GPU Speed-Up given for ResNet50.
2 CPU speed-ups for Batch-Shaping, ConvNet-AIG are from Batch-Shaping paper.
3 HRANK lacks implementation to compute CPU/GPU inference.
4 Only GPU speed-up reported for FPGM.
5 GPU speed-up for DynConv depends on a custom CUDA kernel.
* GMAC values are simulated estimates.

experiments were conducted using three different random seeds. Implementation
details are provided in Appendix B.

Table 3 presents the performance of Fully Convolutional Networks (FCNs)
with ResNet-based MoD backbones for semantic segmentation on the Cityscapes
validation dataset. The FCN with a ResNet86-MoD backbone matches the in-
ference times of the standard FCN-R50 model while enhancing the mean Inter-
section over Union (mIoU) by 0.95%, demonstrating MoD’s ability to boost seg-
mentation accuracy without additional computational costs. The FCN-R75-MoD
provides similar accuracy as standard models but with computational efficiency
improvements, achieving a 9% speedup on CPU and 7% on GPU.

4.3 Object Detection on Pascal VOC

For our object detection experiments, we utilized the PASCAL VOC dataset,
employing the mmobjectdetection library [2] to configure and train our models.

12 Cakaj, Mehnert, Yang.

Table 2: Comparative evaluation of standard and modified MobileNetV2 models on
the ImageNet dataset. This table details Top-1 Accuracy, computational complexity
(MMAC), model size (Params, in millions), and inference performance on CPU and
GPU.

Method Top1 MMAC Params Inference (ms) SpeedUp

Acc (%) (M) CPU GPU CPU GPU

MobileNetV2 71.63 320.36 3.5 47.76 0.78 — —

MobileNetV2-MoD-L 71.55 344.76 3.34 42.94 0.71 1.11 1.10

MobileNetV2-MoD 69.34 220.56 2.94 33.43 0.56 1.43 1.39

Table 3: Comparison of FCN models on the Cityscapes validation dataset, contrasting
standard ResNet50 backbones against MoD-enhanced versions. The table demonstrates
that MoD models deliver performance comparable to or better than the standard FCN,
with either reduced or similar inference times. Metrics include FLOPS (T), parameters
(M), and inference durations (ms).

Model Perf. Metrics (%) FLOPS Params Inference (ms) SpeedUp

aAcc mIoU mAcc (T) (M) CPU GPU CPU GPU

FCN-R86-MoD 95.75 73.75 81.75 0.377 47.15 8272.40 202.65 1.01 1.02

FCN-R50 95.68 72.80 80.25 0.393 47.11 8389.35 206.30 — —

FCN-R75-MoD 95.72 72.72 80.56 0.359 44.66 7687.20 192.50 1.09 1.07

FCN-R50-MoD 95.37 71.58 79.54 0.322 39.66 6757.20 166.50 1.24 1.24

The experiments were conducted using three different random seeds. Detailed
implementation notes are provided in Appendix C.

The outcomes of our experiments with Faster R-CNN models on the PASCAL
VOC dataset are presented in Table 4. The Faster-RCNN with a ResNet86-MoD
backbone demonstrates the MoD approach’s effectiveness by achieving a 0.37%
improvement in mean Average Precision (mAP) and a 0.4% increase in Average
Precision at 50% IoU threshold (AP50) compared to the standard Faster-RCNN-
R50 model. Although GPU inference speed slightly decreases to 0.96x of the
baseline, CPU processing speed is enhanced, showing a 1.10x improvement over
the standard model. Similarly, the Faster-RCNN-R75-MoD model maintains ac-
curacy close to the baseline while boosting inference efficiency, achieving an 11%
speedup on CPU and 5% on GPU.

CNN MoD 13

Table 4: Performance comparison of F-RCNN models on the Pascal VOC validation
dataset, featuring standard and MoD-enhanced ResNet backbones. The table shows
that MoD variants match or exceed the standard F-RCNN’s efficiency, achieving similar
or better object detection performance with faster or equivalent inference times. Metrics
include FLOPS (T), parameters (M), and inference durations (ms).

Model Perf. Metrics (%) FLOPS Params Inference (ms) SpeedUp

mAP AP50 (T) (M) CPU GPU CPU GPU

Faster-RCNN-R86-MoD 77.67 77.67 0.108 41.486 2813.9 83.5 1.10 0.96

Faster-RCNN-R50 77.30 77.27 0.111 41.446 3101.5 80.5 — —

Faster-RCNN-R75-MoD 77.04 77.03 0.104 38.989 2784.5 76.4 1.11 1.05

Faster-RCNN-R50-MoD 75.10 75.10 0.949 33.994 2453.3 69.3 1.26 1.16

5 Channel Selection and Regularization Analysis

5.1 Channel Selector Mechanism

In this section, we investigate the practical operation of the Channel Selector
within our CNN MoD approach. This analysis focuses on the Channel Selector
within a MoD Block in the third module of a ResNet75-MoD. To provide a clearer
understanding of the Channel Selector’s behavior, we analyze how frequently
channels are chosen in the top k routing mechanism. We use five different classes
from the ImageNet validation set: plane, truck, church, cliff, and pug. For each
class, fifty samples are drawn from the validation set, and we count the number
of times each channel is selected. The percentage of occurrences for each channel
is plotted in Figure 4. For comparison, we also plot the percentages across all
1000 classes in Figure 4a.

Our analysis shows that the Channel Selector selects different channels for
different classes, indicating that it adapts to enhance the detection of class-
specific features. Additionally, some channels are selected more frequently across
various classes, suggesting a potential for further computational load reduction
through channel pruning techniques.

5.2 Regularization Effect of Selective Processing

An interesting byproduct of the CNN MoD approach is its regularization ef-
fect, caused by the selective processing of channels in the modified Conv-Blocks.
Traditional CNN architectures typically process all channels within each Conv-
Block, which can lead to learning overly specific features that may not generalize
well to new data. In contrast, the MoD framework selectively reduces the num-
ber of channels processed, focusing on those most important ones for the current
task.

This selective processing naturally encourages the network to prioritize and
refine features that are more likely to be generalizable across various images.
As a result, MoD acts as a form of natural regularization, pushing the network

14 Cakaj, Mehnert, Yang.

0 200 400 600 800 1000
Channel

0

1

2

3

4

5

Pe
rc

en
ta

ge
 o

f T
ot

al
 A

ct
iv

at
io

ns
 (%

) Channel Usage Percentage - Layer 3.9, Class: All

(a) Class: All

0 200 400 600 800 1000
Channel

0

1

2

3

4

5

Pe
rc

en
ta

ge
 o

f T
ot

al
 A

ct
iv

at
io

ns
 (%

) Channel Usage Percentage - Layer 3.9, Class: Plane

(b) Class: Plane

0 200 400 600 800 1000
Channel

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rc

en
ta

ge
 o

f T
ot

al
 A

ct
iv

at
io

ns
 (%

) Channel Usage Percentage - Layer 3.9, Class: Truck

(c) Class: Truck

0 200 400 600 800 1000
Channel

0

1

2

3

4

Pe
rc

en
ta

ge
 o

f T
ot

al
 A

ct
iv

at
io

ns
 (%

) Channel Usage Percentage - Layer 3.9, Class: Church

(d) Class: Church

0 200 400 600 800 1000
Channel

0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 o

f T
ot

al
 A

ct
iv

at
io

ns
 (%

) Channel Usage Percentage - Layer 3.9, Class: Cliff

(e) Class: Cliff

0 200 400 600 800 1000
Channel

0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 o

f T
ot

al
 A

ct
iv

at
io

ns
 (%

) Channel Usage Percentage - Layer 3.9, Class: Pug

(f) Class: Pug

Fig. 4: Channel selection frequencies within the third module of a ResNet75-MoD for
five diverse ImageNet classes: plane, truck, church, cliff, and pug. The analysis shows
the percentage of times channels are selected by the Channel Selector out of the total
selections in the layer, based on fifty samples per class. These percentages are compared
to a baseline derived from all 1000 classes (4a), indicating that the Channel Selector
selects different channels for different classes.

to extract more useful information from a limited set of inputs channels and
thereby promoting the learning of robust, broadly applicable features. This is
particularly advantageous for preventing overfitting, a common challenge in deep
learning models, without additional explicit regularization strategies.

6 Conclusion

In this work, we presented CNN MoD, an approach inspired by the Mixture-of-
Depths method developed for Transformers [27]. This technique combines the
advantages of static pruning and dynamic computing within a single framework.
It optimizes computational resources by dynamically selecting key channels in

CNN MoD 15

feature maps for focused processing within the Conv-Blocks, while skipping less
relevant channels.

It maintains a static computation graph, which optimizes the training and
inference speed without the need for customized CUDA kernels, additional loss
functions, or fine-tuning. These attributes separate MoD from other dynamic
computing methods, offering a significant simplification of both training and
inference processes. CNN MoD achieves performance comparable to traditional
CNNs but with reduced inference times, GMACs, and parameters, or it surpasses
them while maintaining similar inference times, GMACs, and parameters in
image recognition, semantic segmentation, and object detection. For example,
on ImageNet, ResNet86-MoD exceeds the performance of the standard ResNet50
by 0.45% with a 6% speedup on CPU and 5% on GPU. Moreover, ResNet75-
MoD achieves the same performance as ResNet50 with a 25% speedup on CPU
and 15% on GPU.

The fusion operation remains computationally demanding, primarily due to
the implementation of the slicing operation, as revealed by torch.profiler. Future
work will aim to refine this component, potentially through the development of
a customized CUDA kernel to enhance operational efficiency. Further research
into the optimal number of processed channels within layers is also promising
for optimizing performance.

References

1. Bejnordi, B.E., Blankevoort, T., Welling, M.: Batch-shaping for learning condi-
tional channel gated networks. In: 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net
(2020), https://openreview.net/forum?id=Bke89JBtvB 9, 11, 25

2. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W.,
Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu,
X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.:
MMDetection: Open MMLab Detection Toolbox and Benchmark. arXiv preprint
arXiv:1906.07155 (2019) 11

3. Chen, Z., Li, Y., Bengio, S., Si, S.: You Look Twice: GaterNet for Dynamic Filter
Selection in CNNs. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 9172–9180. Com-
puter Vision Foundation / IEEE (2019). https://doi.org/10.1109/CVPR.2019.
00939, http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_You_
Look_Twice_GaterNet_for_Dynamic_Filter_Selection_in_CNNs_CVPR_2019_
paper.html 4

4. Contributors, M.: MMSegmentation: OpenMMLab Semantic Segmentation Tool-
box and benchmark. https://github.com/open-mmlab/mmsegmentation (2020)
22

5. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The Cityscapes Dataset for Semantic Urban Scene
Understanding. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2016) 8, 10, 22

6. Dong, X., Huang, J., Yang, Y., Yan, S.: More is Less: A More Complicated Network
with Less Inference Complexity. In: 2017 IEEE Conference on Computer Vision and

https://openreview.net/forum?id=Bke89JBtvB
https://doi.org/10.1109/CVPR.2019.00939
https://doi.org/10.1109/CVPR.2019.00939
https://doi.org/10.1109/CVPR.2019.00939
https://doi.org/10.1109/CVPR.2019.00939
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_You_Look_Twice_GaterNet_for_Dynamic_Filter_Selection_in_CNNs_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_You_Look_Twice_GaterNet_for_Dynamic_Filter_Selection_in_CNNs_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_You_Look_Twice_GaterNet_for_Dynamic_Filter_Selection_in_CNNs_CVPR_2019_paper.html
https://github.com/open-mmlab/mmsegmentation

16 Cakaj, Mehnert, Yang.

Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp. 1895–
1903. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.205,
https://doi.org/10.1109/CVPR.2017.205 5

7. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer
Vision 88(2), 303–338 (Jun 2010) 8

8. Graves, A.: Adaptive Computation Time for Recurrent Neural Networks. CoRR
abs/1603.08983 (2016), http://arxiv.org/abs/1603.08983 2, 5

9. Guo, Y., Yao, A., Chen, Y.: Dynamic Network Surgery for Efficient DNNs. In:
Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.
pp. 1379–1387 (2016), https://proceedings.neurips.cc/paper/2016/hash/
2823f4797102ce1a1aec05359cc16dd9-Abstract.html 4

10. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both Weights and Connections
for Efficient Neural Network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada. pp. 1135–1143 (2015), https://proceedings.
neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.
html 4

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 770–778. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.90, https://doi.org/10.1109/
CVPR.2016.90 1, 3, 4, 5, 6, 7, 8, 10, 24

12. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft Filter Pruning for Accelerating
Deep Convolutional Neural Networks. In: Lang, J. (ed.) Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden. pp. 2234–2240. ijcai.org (2018). https://doi.
org/10.24963/IJCAI.2018/309, https://doi.org/10.24963/ijcai.2018/309 1

13. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter Pruning via Geometric Median
for Deep Convolutional Neural Networks Acceleration. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019. pp. 4340–4349. Computer Vision Foundation / IEEE (2019).
https://doi.org/10.1109/CVPR.2019.00447, http://openaccess.thecvf.com/
content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_
Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html 1, 4, 9, 11, 25

14. He, Y., Zhang, X., Sun, J.: Channel Pruning for Accelerating Very Deep Neural
Networks. In: IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017. pp. 1398–1406. IEEE Computer Society (2017).
https://doi.org/10.1109/ICCV.2017.155, https://doi.org/10.1109/ICCV.
2017.155 1

15. Hu, J., Shen, L., Sun, G.: Squeeze-and-Excitation Networks. In: 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. pp. 7132–7141. Computer Vision Foundation
/ IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00745,
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-
Excitation_Networks_CVPR_2018_paper.html 3, 25

https://doi.org/10.1109/CVPR.2017.205
https://doi.org/10.1109/CVPR.2017.205
https://doi.org/10.1109/CVPR.2017.205
http://arxiv.org/abs/1603.08983
https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.24963/IJCAI.2018/309
https://doi.org/10.24963/IJCAI.2018/309
https://doi.org/10.24963/IJCAI.2018/309
https://doi.org/10.24963/IJCAI.2018/309
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.1109/CVPR.2019.00447
https://doi.org/10.1109/CVPR.2019.00447
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html

CNN MoD 17

16. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.: Multi-
Scale Dense Networks for Resource Efficient Image Classification. In: 6th Inter-
national Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net
(2018), https://openreview.net/forum?id=Hk2aImxAb 4

17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto (2009) 8

18. Lavin, A., Gray, S.: Fast Algorithms for Convolutional Neural Networks. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016. pp. 4013–4021. IEEE Computer Society (2016).
https://doi.org/10.1109/CVPR.2016.435, https://doi.org/10.1109/CVPR.
2016.435 2, 5

19. Li, F., Li, G., He, X., Cheng, J.: Dynamic Dual Gating Neural Networks. 2021
IEEE/CVF International Conference on Computer Vision (ICCV) pp. 5310–5319
(2021), https://api.semanticscholar.org/CorpusID:244477302 1, 2, 4, 5, 9,
10, 11, 21, 25

20. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning Filters for Effi-
cient ConvNets. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net (2017), https://openreview.net/forum?id=rJqFGTslg 1

21. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: HRank: Fil-
ter Pruning Using High-Rank Feature Map. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020. pp. 1526–1535. Computer Vision Foundation / IEEE (2020). https:
//doi.org/10.1109/CVPR42600.2020.00160, https://openaccess.thecvf.
com/content_CVPR_2020/html/Lin_HRank_Filter_Pruning_Using_High-Rank_
Feature_Map_CVPR_2020_paper.html 4, 9, 11, 25

22. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for
the 2020s. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 11966–11976 (2022). https://doi.org/10.1109/CVPR52688.
2022.01167 6, 7, 8

23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015. pp. 3431–3440. IEEE Computer
Society (2015). https://doi.org/10.1109/CVPR.2015.7298965, https://doi.
org/10.1109/CVPR.2015.7298965 1, 22

24. Luo, J., Wu, J., Lin, W.: ThiNet: A Filter Level Pruning Method for Deep Neural
Network Compression. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. pp. 5068–5076. IEEE Computer
Society (2017). https://doi.org/10.1109/ICCV.2017.541, https://doi.org/
10.1109/ICCV.2017.541 1

25. Ma, N., Zhang, X., Zheng, H., Sun, J.: ShuffleNet V2: Practical Guidelines for
Efficient CNN Architecture Design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision - ECCV 2018 - 15th European Conference, Mu-
nich, Germany, September 8-14, 2018, Proceedings, Part XIV. Lecture Notes in
Computer Science, vol. 11218, pp. 122–138. Springer (2018). https://doi.org/10.
1007/978-3-030-01264-9_8, https://doi.org/10.1007/978-3-030-01264-9_8
2

26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z., DeVito, Z.,

https://openreview.net/forum?id=Hk2aImxAb
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1109/CVPR.2016.435
https://api.semanticscholar.org/CorpusID:244477302
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1109/CVPR42600.2020.00160
https://doi.org/10.1109/CVPR42600.2020.00160
https://doi.org/10.1109/CVPR42600.2020.00160
https://doi.org/10.1109/CVPR42600.2020.00160
https://openaccess.thecvf.com/content_CVPR_2020/html/Lin_HRank_Filter_Pruning_Using_High-Rank_Feature_Map_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Lin_HRank_Filter_Pruning_Using_High-Rank_Feature_Map_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Lin_HRank_Filter_Pruning_Using_High-Rank_Feature_Map_CVPR_2020_paper.html
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8

18 Cakaj, Mehnert, Yang.

Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Wal-
lach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada. pp. 8024–8035 (2019), https://proceedings.
neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.
html 21, 22

27. Raposo, D., Ritter, S., Richards, B.A., Lillicrap, T.P., Humphreys, P.C., San-
toro, A.: Mixture-of-Depths: Dynamically allocating compute in transformer-based
language models. CoRR abs/2404.02258 (2024). https://doi.org/10.48550/
ARXIV.2404.02258, https://doi.org/10.48550/arXiv.2404.02258 2, 3, 5, 14,
24

28. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You Only Look Once:
Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016. pp. 779–788. IEEE Computer Society (2016). https://doi.org/10.1109/
CVPR.2016.91, https://doi.org/10.1109/CVPR.2016.91 1

29. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural In-
formation Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada.
pp. 91–99 (2015), https : / / proceedings . neurips . cc / paper / 2015 / hash /
14bfa6bb14875e45bba028a21ed38046-Abstract.html 1, 23

30. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015).
https://doi.org/10.1007/s11263-015-0816-y, https://doi.org/10.1007/
s11263-015-0816-y 4, 8, 9

31. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In: 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018. pp. 4510–4520. Computer Vision Foundation / IEEE Com-
puter Society (2018). https://doi.org/10.1109/CVPR.2018.00474, http:
//openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_
Inverted_Residuals_CVPR_2018_paper.html 3, 7, 8, 10, 21

32. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015), http://arxiv.org/abs/1409.1556 8, 24

33. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient Processing of Deep Neu-
ral Networks: A Tutorial and Survey. Proc. IEEE 105(12), 2295–2329 (2017).
https://doi.org/10.1109/JPROC.2017.2761740, https://doi.org/10.1109/
JPROC.2017.2761740 2, 5

34. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015. pp. 1–9. IEEE Computer Society (2015). https://

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.48550/ARXIV.2404.02258
https://doi.org/10.48550/ARXIV.2404.02258
https://doi.org/10.48550/ARXIV.2404.02258
https://doi.org/10.48550/ARXIV.2404.02258
https://doi.org/10.48550/arXiv.2404.02258
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594

CNN MoD 19

doi.org/10.1109/CVPR.2015.7298594, https://doi.org/10.1109/CVPR.2015.
7298594 1

35. Teerapittayanon, S., McDanel, B., Kung, H.T.: BranchyNet: Fast inference via
early exiting from deep neural networks. In: 23rd International Conference on Pat-
tern Recognition, ICPR 2016, Cancún, Mexico, December 4-8, 2016. pp. 2464–
2469. IEEE (2016). https://doi.org/10.1109/ICPR.2016.7900006, https:
//doi.org/10.1109/ICPR.2016.7900006 4

36. Veit, A., Belongie, S.J.: Convolutional Networks with Adaptive Inference Graphs.
In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision
- ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11205, pp. 3–
18. Springer (2018). https://doi.org/10.1007/978-3-030-01246-5_1, https:
//doi.org/10.1007/978-3-030-01246-5_1 2, 5, 9, 10, 11, 25

37. Verelst, T., Tuytelaars, T.: Dynamic Convolutions: Exploiting Spatial Sparsity
for Faster Inference. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. pp.
2317–2326. Computer Vision Foundation / IEEE (2020). https://doi.org/10.
1109/CVPR42600.2020.00239, https://openaccess.thecvf.com/content_CVPR_
2020/html/Verelst_Dynamic_Convolutions_Exploiting_Spatial_Sparsity_
for_Faster_Inference_CVPR_2020_paper.html 2, 5, 9, 11, 25

38. Wang, X., Yu, F., Dou, Z., Darrell, T., Gonzalez, J.E.: SkipNet: Learning Dynamic
Routing in Convolutional Networks. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part XIII. Lecture Notes
in Computer Science, vol. 11217, pp. 420–436. Springer (2018). https://doi.org/
10.1007/978-3-030-01261-8_25, https://doi.org/10.1007/978-3-030-01261-
8_25 5

39. Wimmer, P., Mehnert, J., Condurache, A.: COPS: Controlled Pruning Before
Training Starts. In: International Joint Conference on Neural Networks, IJCNN
2021, Shenzhen, China, July 18-22, 2021. pp. 1–8. IEEE (2021). https://doi.org/
10.1109/IJCNN52387.2021.9533582, https://doi.org/10.1109/IJCNN52387.
2021.9533582 4

40. Wimmer, P., Mehnert, J., Condurache, A.: Interspace Pruning: Using Adaptive
Filter Representations to Improve Training of Sparse CNNs. In: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022. pp. 12517–12527. IEEE (2022). https://doi.org/
10.1109/CVPR52688.2022.01220, https://doi.org/10.1109/CVPR52688.2022.
01220 1

41. Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L.S., Grauman, K., Feris,
R.S.: BlockDrop: Dynamic Inference Paths in Residual Networks. In: 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. pp. 8817–8826. Computer Vision Foun-
dation / IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.
2018.00919, http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_
BlockDrop_Dynamic_Inference_CVPR_2018_paper.html 2, 4, 5

42. Xie, Z., Zhang, Z., Zhu, X., Huang, G., Lin, S.: Spatially Adaptive Inference with
Stochastic Feature Sampling and Interpolation. In: Vedaldi, A., Bischof, H., Brox,
T., Frahm, J. (eds.) Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part I. Lecture Notes in Computer

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1007/978-3-030-01246-5_1
https://doi.org/10.1007/978-3-030-01246-5_1
https://doi.org/10.1007/978-3-030-01246-5_1
https://doi.org/10.1007/978-3-030-01246-5_1
https://doi.org/10.1109/CVPR42600.2020.00239
https://doi.org/10.1109/CVPR42600.2020.00239
https://doi.org/10.1109/CVPR42600.2020.00239
https://doi.org/10.1109/CVPR42600.2020.00239
https://openaccess.thecvf.com/content_CVPR_2020/html/Verelst_Dynamic_Convolutions_Exploiting_Spatial_Sparsity_for_Faster_Inference_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Verelst_Dynamic_Convolutions_Exploiting_Spatial_Sparsity_for_Faster_Inference_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Verelst_Dynamic_Convolutions_Exploiting_Spatial_Sparsity_for_Faster_Inference_CVPR_2020_paper.html
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.1007/978-3-030-01261-8_25
https://doi.org/10.1109/IJCNN52387.2021.9533582
https://doi.org/10.1109/IJCNN52387.2021.9533582
https://doi.org/10.1109/IJCNN52387.2021.9533582
https://doi.org/10.1109/IJCNN52387.2021.9533582
https://doi.org/10.1109/IJCNN52387.2021.9533582
https://doi.org/10.1109/IJCNN52387.2021.9533582
https://doi.org/10.1109/CVPR52688.2022.01220
https://doi.org/10.1109/CVPR52688.2022.01220
https://doi.org/10.1109/CVPR52688.2022.01220
https://doi.org/10.1109/CVPR52688.2022.01220
https://doi.org/10.1109/CVPR52688.2022.01220
https://doi.org/10.1109/CVPR52688.2022.01220
https://doi.org/10.1109/CVPR.2018.00919
https://doi.org/10.1109/CVPR.2018.00919
https://doi.org/10.1109/CVPR.2018.00919
https://doi.org/10.1109/CVPR.2018.00919
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_BlockDrop_Dynamic_Inference_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_BlockDrop_Dynamic_Inference_CVPR_2018_paper.html

20 Cakaj, Mehnert, Yang.

Science, vol. 12346, pp. 531–548. Springer (2020). https://doi.org/10.1007/978-
3-030-58452-8_31, https://doi.org/10.1007/978-3-030-58452-8_31 5

43. Yu, F., Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions. In:
Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings (2016), http://arxiv.org/abs/1511.07122 1

44. Yu, R., Li, A., Chen, C., Lai, J., Morariu, V.I., Han, X., Gao, M., Lin, C.,
Davis, L.S.: NISP: Pruning Networks Using Neuron Importance Score Propaga-
tion. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. pp. 9194–9203. Com-
puter Vision Foundation / IEEE Computer Society (2018). https://doi.org/10.
1109/CVPR.2018.00958, http://openaccess.thecvf.com/content_cvpr_2018/
html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html 1

45. Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu, J.:
Discrimination-aware Channel Pruning for Deep Neural Networks. In: Bengio,
S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada. pp. 883–894 (2018), https://proceedings.neurips.cc/
paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html 1

https://doi.org/10.1007/978-3-030-58452-8_31
https://doi.org/10.1007/978-3-030-58452-8_31
https://doi.org/10.1007/978-3-030-58452-8_31
https://doi.org/10.1007/978-3-030-58452-8_31
https://doi.org/10.1007/978-3-030-58452-8_31
http://arxiv.org/abs/1511.07122
https://doi.org/10.1109/CVPR.2018.00958
https://doi.org/10.1109/CVPR.2018.00958
https://doi.org/10.1109/CVPR.2018.00958
https://doi.org/10.1109/CVPR.2018.00958
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html

CNN MoD 21

A Implementation Details and Further Results on
ImageNet

A.1 Implementation Details on ImageNet

We conducted our MoD experiments on ImageNet for 100 epochs, using PyTorch
1.10.1 [26] across four Nvidia GeForce 1080Ti GPUs, following standard training
protocols.‹ ‹ ‹ Our configuration included a batch size of 256, an initial learning
rate of 0.1 decreasing by a factor of 0.1 every 30 epochs, momentum set at 0.9,
and weight decay of 1ˆ10´4. This setup aligns with the practices of comparable
studies, such as DGNet [19].

A.2 Architecture Details of ResNet MoD Models

Table 5 outlines the layer configurations of the ResNet MoD models. The models
incorporates alternating block patterns in each module.

Table 5: Layer Configurations of ResNet MoD Models

Model Layer Configuration Block Type
ResNet18-MoD [2, 2, 2, 2] BasicBlock
ResNet26-MoD [2, 2, 3, 4] BasicBlock
ResNet34-MoD [3, 4, 6, 3] BasicBlock
ResNet42-MoD [3, 3, 6, 6] BasicBlock
ResNet50-MoD [3, 4, 6, 3] BottleneckBlock
ResNet75-MoD [3, 4, 14, 3] BottleneckBlock
ResNet86-MoD [3, 4, 18, 3] BottleneckBlock
ResNet101-MoD [3, 4, 23, 3] BottleneckBlock
ResNet152-MoD [3, 8, 36, 3] BottleneckBlock

A.3 Architecture Details of MobileNetV2 MoD Models

The “MobileNetV2-MoD-L” represents a deeper configuration of the standard
MobileNetV2. The standard MobileNetV2 [31] architecture utilizes a sequence
of inverted residual blocks with a specific configuration pattern defined by the
parameters t (expansion factor), c (number of channels), n (number of times the
block is repeated), and s (stride). The “MobileNetV2-MoD-L” model modifies
these parameters as shown in Table 6.

A.4 Comparative Performance of ResNet Models on ImageNet

Table 7 shows further results for MoD-enhanced ResNets, detailing improve-
ments in computational efficiency, model compactness, and inference speeds.

‹ ‹ ‹ Refer to PyTorch’s official training recipes at PyTorch repository.

https://github.com/pytorch/vision/tree/main/references/classification#resnet

22 Cakaj, Mehnert, Yang.

Table 6: Comparison of Standard MobileNetV2 and MobileNetV2-MoD-L Configura-
tions

Layer Standard Configuration MoD-L Configuration
1 [1, 16, 1, 1] [1, 16, 1, 1]
2 [6, 24, 2, 2] [6, 32, 2, 2]
3 [6, 32, 3, 2] [6, 64, 3, 2]
4 [6, 64, 4, 2] [6, 96, 4, 2]
5 [6, 96, 3, 1] [6, 128, 3, 1]
6 [6, 160, 3, 2] [6, 160, 3, 2]
7 [6, 320, 1, 1] [6, 320, 1, 1]

Table 7: Comparative performance of standard and MoD-enhanced ResNet models on
the ImageNet dataset. The table evaluates Top-1 Accuracy, computational complexity
(GMAC), model size (Params, in millions), and inference speed improvements on CPU
and GPU.

Method Top1 GMAC Params Inference (ms) SpeedUp

Acc (%) (M) CPU GPU CPU GPU

ResNet34 73.92 3.68 21.29 98.83 1.27 — —
ResNet42-MoD 72.03 2.29 17.72 64.01 0.88 1.54 1.45
ResNet34-MoD 71.44 2.06 12.93 60.79 0.83 1.63 1.53

ResNet18 70.37 1.82 11.18 53.86 0.75 — —
ResNet26-MoD 69.53 1.36 11.4 42.16 0.58 1.28 1.28
ResNet18-MoD 64.05 0.89 5.46 33.63 0.47 1.60 1.58

A.5 Comparative Performance of ResNet MoD-lk Models on
ImageNet

Table 8 presents a comparison of the performance of standard and MoD-enhanced
ResNet models with a specific focus on the position of reintegration of processed
channels. “MoD-lk” denotes models where processed channels are added to the
last k channels of the original feature map. This experimental variation aims
to assess the impact of consistent channel positioning on network performance.
The results indicate that MoD-lk models perform comparably to their counter-
parts where processed channels are added to the first k channels, suggesting that
maintaining a consistent position for processed information within the feature
maps is beneficial for optimizing model performance.

B Implementation Details Semantic Segmentation

In the Cityscapes experiments, PyTorch 1.10.1 [26] and four Nvidia GeForce
1080Ti GPUs were used. Employing the MMSegmentation Framework [4], we
utilized FCN [23] on the dataset [5], which consists of 2,975 training, 500 val-
idation, and 1,525 testing images across 19 semantic classes. Training involved

CNN MoD 23

Table 8: This table presents a comparison between standard MoD models and those
enhanced with MoD-lk, where processed channels are integrated into the last kk chan-
nels. The evaluation covers Top-1 Accuracy, computational complexity (GMAC), model
size (in millions of parameters), and inference speed improvements on both CPU and
GPU. The aim is to analyze the impact of channel positioning on the performance of
ResNet models on the ImageNet dataset.

Method Top1 GMAC Params Inference (ms) SpeedUp

Acc (%) (M) CPU GPU CPU GPU

ResNet86-MoD 76.72 3.92 25.60 150.96 2.40 1.06 1.05
ResNet86-MoD-lk 76.64 3.92 25.60 150.96 2.40 1.06 1.05
ResNet75-MoD 76.27 3.48 23.10 128.90 2.19 1.25 1.15
ResNet75-MoD-lk 76.22 3.48 23.10 128.90 2.19 1.25 1.15
ResNet50-MoD 74.79 2.60 18.11 108.74 1.75 1.48 1.44
ResNet50-MoD-lk 74.57 2.60 18.11 108.74 1.75 1.48 1.44

resizing, random cropping, flipping, photometric distortion, normalization, and
padding. Testing employed multi-scale flip augmentation and normalization.

The FCN model, with a ResNet50 backbone, used an Encoder-Decoder ar-
chitecture with FCN-Head as the decode and auxiliary heads. The model used
SyncBN and a dropout ratio of 0.1, with the auxiliary head contributing 40% to
the total loss.

Optimization was via SGD (learning rate 0.01, momentum 0.9, weight decay
0.0005). A polynomial decay learning rate policy was applied (power 0.9, mini-
mum learning rate 1e-4), over 80,000 iterations with checkpoints and evaluations
(focusing on mIoU) every 8,000 iterations.

C Implementation Details Object Detection

Model Configuration: We configure our Faster R-CNN [29] with a ResNet-50
backbone and a Feature Pyramid Network (FPN) neck for multi-scale feature
extraction.

Data Preprocessing and Augmentation: Our preprocessing pipeline employs a
sequence of transformations to prepare input images for object detection tasks.
Initially, images are loaded and their corresponding annotations are retrieved.
Subsequently, we resize the images to a resolution of p1000, 600q, ensuring the
preservation of their original aspect ratio. To augment the dataset and intro-
duce variability, we apply random horizontal flips with a 50% probability. This
augmentation strategy is applied uniformly across the training dataset, aiming
to enhance model robustness and generalization capability. For validation, im-
ages undergo a similar resizing process without the application of random flips,
maintaining consistency in evaluation conditions.

24 Cakaj, Mehnert, Yang.

Training Configuration: The model is trained on the combined train sets of
VOC2007 and VOC2012 and evaluated on the VOC2007 val set. Training em-
ploys a batch size of 2, using an AspectRatioBatchSampler for GPU efficiency.
We adopt SGD with momentum and weight decay, adjusting the learning rate as
per a predefined schedule. The mean Average Precision (mAP) metric, calculated
using the ‘11points‘ interpolation method, serves as the evaluation metric.

Evaluation: The evaluation on the VOC2007 val set employs the standard VOC
mAP metric, adhering to the “11points” method. This setup mirrors the training
configuration but without data augmentation, ensuring deterministic inference.

D Experiments on CIFAR

Our evaluation of the MoD approach was conducted on the CIFAR-10/100
datasets, comprising 50,000 training and 10,000 test color images of 32x32 pix-
els. We utilized a range of CNN architectures for our experiments, including
ResNet18/34/50 [11] and VGG16/19-BN [32].

To ensure robustness and reproducibility, each model was trained and eval-
uated five times using different random seeds, impacting network initialization,
data ordering, and augmentation processes. We present the mean test accuracy
and its standard deviation for these trials. The data split comprised 90% for
training and 10% for validation, with the best-performing model on the valida-
tion set chosen for the final evaluation.

E Comparative Analysis of MoD in CNNs and
Transformers

In the main body of this paper, we detailed the application of the MoD ap-
proach to CNNs. This section aims to outline how this approach differs from the
Mixture-of-Depths application in Transformers [27].

Token vs. Channel Processing:

– Transformers: In Transformers, MoD operates at the token level. Tokens
represent the units of data processed throughout the model’s architecture,
typically as subwords or whole words. They are processed throughout the
entire Transformer architecture.

– CNNs: Conversely, MoD in CNNs treats channels within feature maps as
“tokens”. This novel approach differs from Transformers because channels
in traditional CNNs are not treated as tokens, and their significance and
composition vary from one convolutional layer to the next.

Token/Channel Selection:

– Transformers: Selection is based on a linear projection that assigns a scalar
value to each token.

CNN MoD 25

– CNNs: CNNs use a mini neural network (incorporating Adaptive Average
Pooling 2D, a two-layer fully connected network with Sigmoid activation) in-
spired by Squeeze-and-Excitation blocks [15], specifically tailored for image-
based tasks.

Architecture Modification:

– Transformers: The architecture of Transformer blocks remains unchanged
with the use of MoD; only the quantity of processed tokens varies. Trans-
former models are designed to handle a variable number of tokens.

– CNNs: In CNNs, varying the number of channels in convolutional layers
is impractical. MoD thus requires adjustments to the convolutional layers
themselves, including a reduction in the number of channels in the convolu-
tion kernels to match the reduced number of input feature map channels.

Reintegration of Processed Information:

– Transformers: Processed tokens are added back to their original counter-
parts, a method made effective through the use of positional encoding.

– CNNs: Unlike in Transformers, neither replacing nor adding back processed
channels to their original positions has proven effective in CNNs. More ef-
fective is the addition of processed channels to a fixed set of channels, such
as the first k channels, to maintain consistency in locating processed infor-
mation within the network.

E.1 Effect of Channel Parameter c on Accuracy and Inference
Times

We evaluated the impact of varying the channel parameter c on the Top-1 accu-
racy and inference times of the ResNet50-MoD model on the ImageNet dataset.
The parameter c controls the number of channels processed in the MoD ap-
proach. As shown in Table 10, using c “ 64 yields the best balance between
accuracy and inference times. Note that c ą 64 is not possible since the number
of channels in the first Conv-Block of ResNets is fixed at 64.

E.2 Consistency of Performance across Random Seeds

We provide standard deviations for the ResNet experiments on ImageNet in Ta-
ble 11. Other state-of-the-art pruning and dynamic computation methods, such
as DGNet [19], Batch-Shaping [1], ConvNet-AIG [36], HRANK [21], FPGM [13],
and DynConv [37], do not report standard deviations, preventing direct com-
parison. Nevertheless, the consistent results across different MoD configurations
demonstrate that the MoD approach does not introduce additional variance, as
evidenced by the low standard deviations.

26 Cakaj, Mehnert, Yang.

Table 9: Performance metrics comparison on the CIFAR10 and CIFAR100 datasets us-
ing standard models and their MoD variants. This table illustrates the trade-off between
efficiency and inference time, demonstrating that the MoD models can achieve compa-
rable performance to the standard models at faster inference times or improved perfor-
mance at comparable inference times. FLOPS are in millions of multiply-accumulate
operations (MMAC), parameters in millions (M), and inference times in milliseconds
(ms).

Model Set Test Acc. FLOPS Params Inference (ms) SpeedUp

(%) (MMAC) (M) CPU GPU CPU GPU

ResNet18 C10 94.04 ˘ 0.08 557 11.17 15.67 0.24 - -

ResNet18-MoD C10 92.37 ˘ 0.18 255 4.95 8.32 0.14 1.88 1.73

ResNet34 C10 93.69 ˘ 0.27 1016 21.28 30.52 0.42 - -

ResNet34-MoD C10 93.83 ˘ 0.20 633 12.42 18.10 0.27 1.69 1.54

ResNet50 C10 93.31 ˘ 0.33 1310 23.52 48.47 0.83 - -

ResNet50-MoD C10 93.24 ˘ 0.24 808 16.07 33.76 0.58 1.44 1.41

ResNet18 C100 76.47 ˘ 0.18 557 11.22 14.99 0.23 - -

ResNet18-MoD C100 72.73 ˘ 0.21 255 4.99 8.89 0.13 1.69 1.75

ResNet34 C100 77.07 ˘ 0.41 1160 21.33 30.67 0.42 - -

ResNet34-MoD C100 76.86 ˘ 0.23 633 12.47 18.66 0.27 1.64 1.55

ResNet50 C100 76.17 ˘ 0.63 1310 23.71 46.64 0.81 - -

ResNet50-MoD C100 76.76 ˘ 0.61 808 16.26 34.81 0.58 1.34 1.41

VGG16-BN C10 93.27 ˘ 0.11 315 15.25 8.80 0.14 - -

VGG16-BN-MoD C10 91.79 ˘ 0.14 155 9.83 5.47 0.16 1.61 0.87

VGG19-BN C10 93.21 ˘ 0.07 400 20.57 11.55 0.18 - -

VGG19-BN-MoD C10 91.82 ˘ 0.18 155 9.91 5.81 0.22 1.99 0.81

VGG16-BN C100 72.48 ˘ 0.32 315 15.30 9.27 0.14 - -

VGG16-BN-MoD C100 69.23 ˘ 0.25 155 9.88 6.41 0.15 1.45 0.95

VGG19-BN C100 71.34 ˘ 0.12 400 20.61 11.38 0.18 - -

VGG19-BN-MoD C100 69.19 ˘ 0.11 155 9.96 5.75 0.23 1.98 0.80

Table 10: Top-1 accuracy and inference times in ms on ImageNet for different values
of c, comparing results when processed channels are added to the first k channels (S)
versus their original positions (OP) for R50-MoD.

c Top-1 (S) Top-1 (OP) CUDA (S) CPU (S)

2 72.51 55.36 2.23 132.64
4 73.74 60.78 1.99 118.85
8 74.43 63.05 1.90 114.85
16 74.74 65.35 1.97 114.06
32 74.68 70.80 1.83 111.30
64 74.79 70.31 1.75 108.74

CNN MoD 27

Table 11: Top-1 accuracy and standard deviation on ImageNet.

Method Top-1 Acc. (%) ˘ Std. Dev.

R152-MoD 77.81 ˘ 0.05
R101 77.81 ˘ 0.07
R101-MoD 77.08 ˘ 0.08
R86-MoD 76.72 ˘ 0.04
R75-MoD 76.27 ˘ 0.07
R50 76.25 ˘ 0.19
R50-MoD 74.79 ˘ 0.08

	CNN Mixture-of-Depths

