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Abstract—Regularization techniques help prevent overfitting
and therefore improve the ability of convolutional neural net-
works (CNNs) to generalize. One reason for overfitting is the
complex co-adaptations among different parts of the network,
which make the CNN dependent on their joint response rather
than encouraging each part to learn a useful feature representa-
tion independently. Frequency domain manipulation is a powerful
strategy for modifying data that has temporal and spatial
coherence by utilizing frequency decomposition. This work intro-
duces Spectral Wavelet Dropout (SWD), a novel regularization
method that includes two variants: 1D-SWD and 2D-SWD. These
variants improve CNN generalization by randomly dropping
detailed frequency bands in the discrete wavelet decomposition
of feature maps. Our approach distinguishes itself from the pre-
existing Spectral “Fourier” Dropout (2D-SFD), which eliminates
coefficients in the Fourier domain. Notably, SWD requires only a
single hyperparameter, unlike the two required by SFD. We also
extend the literature by implementing a one-dimensional version
of Spectral “Fourier” Dropout (1D-SFD), setting the stage for
a comprehensive comparison. Our evaluation shows that both
1D and 2D SWD variants have competitive performance on
CIFAR-10/100 benchmarks relative to both 1D-SFD and 2D-
SFD. Specifically, 1D-SWD has a significantly lower computa-
tional complexity compared to 1D/2D-SFD. In the Pascal VOC
Object Detection benchmark, SWD variants surpass 1D-SFD and
2D-SFD in performance and demonstrate lower computational
complexity during training.
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I. INTRODUCTION

Over recent years, convolutional neural networks (CNNs)
have demonstrated significant advancements in a variety of
computer vision applications, such as image recognition [1] or
object detection [2]. However, CNNs are prone to overfitting,
especially when the available training data is limited or when
the model’s capacity is excessively large [3]. Regularization
techniques are necessary to ensure that models can generalize
effectively to new, unseen data [4].

Various regularization methods have been developed to
address the overfitting problem in CNNs. These include weight
penalties such as L1 regularization [5] and weight decay [6], in
addition to techniques like data augmentation [7], and ensem-
ble learning methods [8]. Among these, dropout mechanisms,
notably standard dropout [9] and dropconnect [3], play an
important role by randomly dropping neurons, weights, or

feature map entries during training to prevent co-adaptation of
units within the network. However, the effectiveness of these
methods is often compromised in convolutional layers where
features have spatial correlation, leading to suboptimal regu-
larization and the continuation of overfitting problems [10].

The limitations within standard dropout approaches have
led to the development of more advanced variants like drop-
block [10] and dropout2d [11]. These methods introduce struc-
tured forms of dropout, designed to improve regularization
in CNNs by strategically dropping feature map segments or
channels. This addresses the spatial correlation in the feature
maps and therefore increases the regularization effect.

The investigation of alternative regularization strategies has
led to the use of frequency domain manipulation. Frequency
decomposition provides a natural framework for the manip-
ulation of data with spatial coherence [12]. Khan et al. [13]
introduced Spectral “Fourier” Dropout (2D-SFD), a strategy
designed to reduce overfitting by selectively pruning and
dropping Fourier domain coefficients within feature maps.
The process begins with the application of a two-dimensional
discrete cosine transform (2D-DCT) to transform each channel
in feature maps into the frequency domain. It then prunes
Fourier coefficients that are considered weak or “noisy”,
i.e. those that fall below the η quantile. Subsequently, a
dropout mask is applied to the remaining coefficients with
a dropout probability p. Finally, the modified feature map is
transformed back into the spatial domain using an inverse 2D-
DCT. The effectiveness of 2D-SFD lies in its ability to make
CNNs insensitive to weak and “noisy” spectral components.
This is achieved by randomly preserving only the important
Fourier coefficients for signal reconstruction. Moreover, it
effectively prevents co-adaptation among feature detectors by
diversifying the network’s reliance across various frequency
components [13].

The discrete wavelet transform (DWT) provides an alterna-
tive way for regularization, offering advantages in handling
multi-resolution data. Unlike the Fourier transform, which
decomposes signals into sinusoidal components without local-
ization, the DWT divides data into frequency bands at multiple
resolutions, capturing both global and localized features [14].
This capability motivates the investigation of Spectral Wavelet
Dropout (SWD), a novel method proposed in this work for
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Fig. 1. Illustration of the 2D Spectral Wavelet Dropout process applied to an input feature map. A one-level 2D wavelet decomposition divides the map into
four sub-bands: LL (low-frequency), LH (horizontal high-frequency), HL (vertical high-frequency), and HH (diagonal high-frequency), presented sequentially
from top to bottom in the figure. The high-frequency bands are randomly dropped (HL is shown as dropped) according to a dropout probability p, while the
LL band is consistently maintained. The feature map is then transformed back into the spatial domain using an inverse 2D wavelet transform (2D-IDWT).

improving CNN generalization by randomly dropping wavelet
bands within the discrete wavelet decomposition of feature
maps.

We introduce two variants of Spectral Wavelet Dropout:
the one-dimensional (1D-SWD) and two-dimensional (2D-
SWD) versions. For 1D-SWD, consider a feature map X ∈
RC×H×W . The initial step involves flattening the feature map
across each channel, resulting in X̂ ∈ RC×H·W . Then, 1D-
SWD performs a three-level one-dimensional discrete wavelet
decomposition (1D-DWT) of X̂ . This decomposition produces
approximation and detailed frequency coefficients across three
levels, also referred to as frequency bands. In the next phase,
1D-SWD randomly drops detailed wavelet bands based on a
dropout probability p, effectively introducing regularization.
The final step involves transforming the feature map back into
the spatial domain through an inverse 1D-DWT and reshaping
it for input into the subsequent network layer. An illustration
of 1D-SWD is shown in Figure 3 in the Appendix.

The 2D-SWD method applies a one-level two-dimensional
wavelet decomposition to each channel of the feature map X .
This decomposition process produces four distinct sub-bands:
LL (approximation), LH (horizontal details), HL (vertical
details), and HH (diagonal details). Following the 1D-SWD
method, 2D-SWD randomly drops the LH, HL, and HH
detailed frequency bands, based on a dropout probability p,
while preserving the LL approximation band. The modified
feature map is then transformed back into the spatial domain
through an inverse 2D wavelet transform (2D-IDWT) before
being input into the subsequent network layer. Both 1D-SWD
and 2D-SWD are characterized by a single hyperparameter,

p, which considerably simplifies the hyperparameter tuning
process. An illustration of 2D-SWD is shown in Figure 1.

Jo and Bengio [15] showed that CNNs have a bias towards
higher frequency components. Similarly, Geirhos et al. [16]
presented a texture bias in CNNs trained on ImageNet [17].
Building on these findings, our method differs from the
Spectral “Fourier” Dropout [13] approach by strategically
targeting the frequency domain. Specifically, SWD randomly
drops detailed frequency bands. This approach is based on
the understanding that the approximation band of the wavelet
transformation typically provides a smoothed representation
of the original signal, while the detailed bands capture high
frequency variation and noise. By randomly dropping the
detailed bands, SWD encourages the CNN to diversify its
reliance away from single detailed frequency bands within the
feature maps.

We extend the literature by implementing a one-dimensional
version of Spectral “Fourier” Dropout (1D-SFD), to present
a fair comparison of the methods. As a one-dimensional
analogue to 2D-SFD, 1D-SFD begins with the flattening of
the feature map across each channel. This is followed by
the application of a one-dimensional discrete cosine transform
(1D-DCT). Subsequently, a specified proportion of activations,
denoted by η, is pruned, and a dropout mask is applied to the
remaining Fourier coefficients using a dropout probability p.
Finally, the modified feature map is transformed back to the
spatial domain using the inverse 1D-DCT. It is noteworthy that
1D-SFD uses two hyperparameters.

The motivation behind using 1D transformations lies in their
computational efficiency. Moreover, they offer specific pattern



recognition capabilities for images with informative horizontal
features. While 2D transformations provide a more detailed
analysis by capturing both vertical and horizontal patterns,
our experiments demonstrate that 1D approaches can achieve
comparable regularization effects with lower computational
demands.

Our evaluation shows that both 1D and 2D-SWD variants
have competitive performance on CIFAR-10/100 benchmarks
relative to both 1D-SFD and 2D-SFD. Specifically, 1D-SWD
is highlighted for its competitive results, considering its
significantly lower computational complexity during training
compared to 1D/2D-SFD. On ImageNet, 1D-SWD maintains
competitive performance considering the reduced computa-
tional demand during training. In the Pascal VOC Object
Detection benchmark, SWD variants exceed 1D-SFD and 2D-
SFD in terms of performance while having a lower training
overhead. Specifically, 2D-SWD improves the mean Average
Precision (mAP) by 0.56 percentage points (a 0.72% increase)
compared to the baseline. A key benefit of the SWD method is
its simplified setup, which only requires one hyperparameter,
unlike the SFD method that needs two.

II. RELATED WORK

A. Regularization

Regularization is one of the key elements of deep learning
[4], allowing the model to generalize well to unseen data even
when trained on a finite training set or with an imperfect
optimization procedure [18]. There are several techniques
to regularize CNNs which can be categorized into groups.
Data augmentation methods like cropping, flipping, adjusting
brightness or sharpness [7] and cutout [19] transform the
training dataset to avoid overfitting. Regularization techniques
like dropout [9], dropblock [10] or dropconnect [3] drop
neurons or weights from the CNN during training to prevent
units from co-adapting too much [9]. Khan et al. [13] extend
the idea of dropping parts of CNNs to the spectral domain.
Spectral “Fourier” Dropout avoids overfitting by pruning weak
and “noisy” Fourier domain coefficients of the feature maps
and randomly dropping a percentage of the remaining Fourier
domain coefficients.

Furthermore, CNNs can be regularized using penalty terms
in the loss function. Weight decay [6] encourages the weights
of the CNN to be small in magnitude. The L1-regularization
[5] encourages the weights of non-relevant features to be zero.

B. Wavelet Transforms in CNNs

Wavelet transformations are used in image processing [20],
for example the JPEG2000 format [21] uses wavelets to
represent images as highly sparse feature maps. Recently,
wavelet transforms have been used in deep learning due to
their multi-resolution analysis properties.

1) Wavelet Neural Networks: In a limited form, CNNs
can be seen as a form of multi-resolution analysis. However,
conventional CNNs are missing a large part of spectral in-
formation present in feature maps [22]. Therefore, different

approaches supplement the missing part of the spectral infor-
mation via additional components in the entire architecture
using the DWT. Fujieda et al. [22] present wavelet CNNs and
demonstrate benefits in texture classification. Liu et al. [23]
integrates a wavelet transform into the CNN architecture to
reduce the resolution of feature maps, while at the same time
increasing the receptive field.

2) Pooling: Depending on the data, max pooling can re-
move and average pooling can dilute important details from
an image. Wavelet Pooling [24] overcomes these issues by
decomposing the feature maps into a second-level decompo-
sition and removing the first-level sub-bands to reduce the
feature dimensions. Adaptive wavelet pooling [25] extends this
approach by using adaptive- and scaled-wavelets in the pooling
process.

3) Compression: CNNs are successfully used in a number
of applications. Despite this, their storage requirements have
largely prevented their use on mobile devices. Wolter et al.
[26] showed how the fast wavelet transform can be used
to compress linear layers in neural networks using learnable
wavelets.

III. METHOD

One of the main advantages of the wavelet transform over
the Fourier transform is its superior spatial/temporal resolu-
tion. This property allows the wavelet transform to capture
information about both frequency and location simultaneously,
providing an optimal structure for manipulating data with
spatial coherence.

Inspired by the concept of Spectral “Fourier” Dropout
presented by Khan et al. [13], we introduce Spectral Wavelet
Dropout, which includes two variants: 1D-SWD and 2D-SWD.
These variants improve CNN generalization by randomly
dropping detailed frequency bands in the discrete wavelet
decomposition of feature maps. To effectively integrate SWD
into CNNs, we first look at the basics of one- and two-
dimensional discrete wavelet transforms.

A. Discrete Wavelet Transform
The discrete wavelet transform is a method for analyzing

signals and images using discretely sampled wavelets. The
DWT can be implemented with various wavelet families, such
as Haar wavelets [27] and Daubechies wavelets [28].

Given a vector x ∈ Rd of even length, the one-level
one-dimensional DWT (1D-DWT) is computed by process-
ing x through corresponding low-pass and high-pass filters,
denoted as g and h. These filters, which are quadrature mirror
filters [29], effectively split the frequency spectrum of the
signal, allowing every other sample to be removed according
to Nyquist’s theorem [30]. The computation is formalized by
the following equations:

ylow[n] = (g ∗ x)[n] =
N−1∑
k=0

g[k] · x[2n− k], (1)

yhigh[n] = (h ∗ x)[n] =
N−1∑
k=0

h[k] · x[2n− k], (2)
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Fig. 2. Detailed schematic of a three-level wavelet filter bank used in our
proposed 1D-SWD method. The filter bank decomposes an input signal x[n]
into hierarchical sets of approximation and detailed coefficients. This allows
analysis of the signal across multiple resolutions. This structured arrangement,
using sequential high-pass h[n] and low-pass g[n] filters with subsequent
downsampling, enables SWD to prevent overfitting. By randomly dropping
high-frequency details, it promotes model generalization and prevents over-
fitting.

where N is the filter length and n denotes the output terms,
with n ∈ {1, . . . , d/2}. The output ylow represents the ap-
proximation coefficients from the low-pass filter and yhigh the
detailed coefficients from the high-pass filter.

1D-DWT requires signals with lengths that are powers of
two. To address border distortions and signal lengths that do
not meet this condition, the signal is typically extended. One
common method is zero-padding, where zeros are appended
to the signal to meet the required length for transformation.

The 1D-DWT’s decomposition can be iteratively applied to
the approximation coefficients to refine frequency resolution.
Each iteration applies high- and low-pass filters to the signal
followed by downsampling. This process can be visualized in a
binary tree structure, often referred to as a filter bank (as shown
in Figure 2). The downsampling operation is symbolized by
↓ 2. The approximation coefficients are a smoothed version of
the original signal, whereas the detailed coefficients at levels
1, 2, and 3 capture increasingly fine-grained high-frequency
content and noise.

The two-dimensional discrete wavelet transform (2D-DWT)
is used to analyze signals in two-dimensional spaces, such
as images. This transformation is applied sequentially along
two orthogonal dimensions, commonly rows and columns.
Firstly, a one-level one-dimensional DWT is applied to each
row of the image matrix, decomposing it into low and high-
frequency components. Then, this decomposition is applied
to each column of the resulting sub-images, leading to four
distinct sub-bands for each level of decomposition:

• LL (Low-Low) sub-band: This contains the approxi-
mation coefficients, resulting from applying the low-
pass filter across both dimensions. It shows the primary
features of the image, serving as a blurred, downsampled
version of the original.

• LH (Low-High) sub-band: This contains the vertical
details of the image, derived from applying the low-pass
filter horizontally and the high-pass filter vertically.

• HL (High-Low) sub-band: This contains horizontal de-
tails, derived by applying the high-pass filter horizontally

and the low-pass filter vertically.
• HH (High-High) sub-band: This sub-band contains di-

agonal details, derived by applying the high-pass filter
across both dimensions.

The DWT operates through matrix multiplication, character-
izing it as a linear transformation. This linearity is essential be-
cause, during backpropagation, the gradient computation with
respect to the DWT is directly determined by the transform
matrix itself.

B. Spectral Wavelet Dropout

Spectral Wavelet Dropout is introduced in two variants,
1D-SWD and 2D-SWD. Given a batch of feature maps
X ∈ RB×C×H×W , 1D-SWD begins by flattening X along the
spatial dimensions, resulting in X̂ ∈ RB×C×H·W . A three-
level 1D-DWT is performed using the Daubechies-3 (db3)
wavelet [28], producing approximation and detailed frequency
bands.

Subsequently, a mask m ∈ {0, 1}3 is generated, where
each element mi is drawn from a Bernoulli distribution with
a probability of (1 − p) for being 1. This mask is used to
selectively drop detailed frequency bands. The approximation
coefficients are preserved to maintain the primary signal
structure. To compensate for the effect of dropout on signal
energy, the feature maps are scaled by a factor of (1− p)−1.

The process for 2D-SWD is analogous. A one-level 2D-
DWT is applied to each channel, resulting in LL, LH, HL,
and HH sub-bands. The mask is then applied to the detailed
sub-bands.

Both processes end with the inverse DWT, 1D-IDWT for
1D-SWD and 2D-IDWT for 2D-SWD, followed by reshaping
to the original dimensions in the 1D-DWT variant. Algorithm
1 shows the steps for the 1D-SWD. The complete procedure
for the 2D-SWD is explained in Section VII-B the Appendix.

The principle of SWD is based on the ability of the wavelet
transformation to decompose signals into components of dif-
ferent spatial-frequency localization. By selectively dropping
the detailed frequency components, SWD encourages the CNN
to not overly rely on any specific set of frequencies, thereby
preventing co-adaptation of feature detectors. This promotes
a learning of features across all spatial frequencies present in
the data.

IV. EXPERIMENTS

We evaluated the Spectral Wavelet Dropout method on
supervised image recognition on CIFAR-10/100 [31] and
ImageNet [17] datasets, and object detection on the Pascal
VOC [32] dataset.

The implementation of 1D/2D-SFD [13] was supported by
the PyTorch DCT library.1 For 1D/2D-SWD, we utilized the
wavelet transform provided by Cotter [33].

A notable difference in our approach compared to SFD
is that 1D/2D-SWD requires only a single hyperparameter -
the dropout rate p. We performed a hyperparameter search

1https://github.com/zh217/torch-dct

https://github.com/zh217/torch-dct


Algorithm 1: Spectral Wavelet Dropout - 1D-SWD
Parameter: dropout probability = p ∈ (0, 1)
Input: X ∈ RB×C×H×W

Output: X̂ ∈ RB×C×H×W

// Save size of X and flatten the
last two dimensions of X

1 size = X .size()
2 X̂ = flatten(X, start dim = 2)
// Compute the 3-level 1D-DWT for

each channel using the daubechie-3
wavelet

3 AP,L1, L2, L3 = 1D-DWT(X̂, J = 3,wave=’db3’)
// Create mask for dropout

4 dropout mask = Bernoulli(3, prob = 1− p)
// Wavelet Dropout

5 L1 = L1 · dropout mask[0]/(1− p)
6 L2 = L2 · dropout mask[1]/(1− p)
7 L3 = L3 · dropout mask[2]/(1− p)
// Compute inverse Wavelet

transformation
8 X̂ = 1D-IDWT([AP,L1, L2, L3],wave=’db3’)
// Reshape the feature map

9 X̂ = reshape(X̂, size)

for p within the set p = {0.1, 0.2, 0.3, 0.4, 0.5}. In contrast,
for 1D/2D-SFD, a grid search was performed over both the
dropout rate p = {0.1, 0.2, 0.3, 0.4, 0.5} and the pruning
rate η = {0, 0.1, 0.2, 0.3, 0.4}. Including η = 0 allowed
us to evaluate the efficacy of 1D/2D-SFD under a single
hyperparameter setting, although this did not consistently yield
optimal results. Detailed outcomes of these hyperparameter
searches and further implementation details are provided in
the Appendix VII-H.

Training overheads are reported relative to the baseline
model to offer a clear comparison of the additional computa-
tional resources required. Further details on the methodology
for runtime measurement are provided in Section V-C.

A. Image Classification on CIFAR-10/100

We analyzed the impact of both 1D-SWD and 2D-SWD on
different architectures, including ResNet18 (R18), ResNet34
(R34), ResNet50 (R50) [1], and VGG16-BN (V16) [34],
focusing on accuracy improvements and training overhead.
The results are shown in Tables I and II.

Residual Networks (ResNets) [1] are structured into four
stages consisting of basic and bottleneck blocks, starting with
an initial convolutional layer and ending with a terminal linear
layer. Analogous to other dropout variants like dropout2d
[11], dropblock [10], and Spectral “Fourier” Dropout [13], we
integrate 1D/2D-SWD within the deeper layers of the CNNs
to improve regularization. Implementation details are provided
in the Appendix, Section VII-D.

1) Results: The results of our experiments are shown in
Table I and II. The use of 1D-SWD resulted in accuracy

TABLE I
1D SPECTRAL DROPOUT METHODS ON CIFAR-10/100: ACCURACY AND

TRAINING TIME MULTIPLIER (TTM).

Method CIFAR-10 Acc. CIFAR-100 Acc. TTM

R18 94.04%± 0.08% 76.47%± 0.20% 1.00x
R18 + 1D-SFD 94.19%± 0.31% 77.41%± 0.13% 1.15x
R18 + 1D-SWD 94.35%± 0.13% 77.07%± 0.18% 1.12x

R34 93.69%± 0.30% 77.07%± 0.45% 1.00x
R34 + 1D-SFD 93.81%± 0.61% 77.50%± 0.13% 1.20x
R34 + 1D-SWD 94.41%± 0.10% 77.52%± 0.16% 1.19x

R50 93.31%± 0.36% 76.18%± 0.76% 1.00x
R50 + 1D-SFD 93.85%± 0.40% 77.38%± 0.73% 1.60x
R50 + 1D-SWD 93.67%± 0.10% 77.46%± 0.13% 1.25x

V16 93.27%± 0.12% 72.48%± 0.35% 1.00x
V16 + 1D-SFD 93.49%± 0.07% 72.27%± 0.46% 1.17x
V16 + 1D-SWD 93.42%± 0.17% 72.57%± 0.32% 1.08x

improvements for all models compared to the baseline con-
figurations. Specifically, the accuracy of ResNet50 on CIFAR-
100 was improved by 1.28%pt. Additionally, integrating 2D-
SWD on ResNet50 for CIFAR-100 improved performance by
1.8%pt.

Our analysis shows that on the CIFAR-10 dataset, both
1D and 2D Spectral Wavelet Dropout methods demonstrate
performance that is competitive with, and sometimes even
surpasses, that of 1D and 2D Spectral Fourier Dropout. For
example, ResNet34 with 1D-SWD achieved an accuracy of
94.41%± 0.10%, outperforming 1D and 2D-SFD.

While 2D Spectral Wavelet Dropout offers notable accuracy
improvements, it also has a higher computational overhead
compared to its 1D counterpart. Moreover, compared to the
overheads associated with SFD methods, 1D-SWD demon-
strates the lowest training overhead. This highlights the com-
putational efficiency of 1D-SWD, making it a more practi-
cal choice for real-world applications where computational
resources are constrained.

The regularization capability of 1D-SWD, demonstrated to
be on par with or superior to 1D/2D-SFD. The combination of
its computational efficiency and simplicity makes it an optimal
choice for tasks where both performance and computational
efficiency are valued.

B. Image Classification on ImageNet

We extend our evaluation to the ImageNet dataset [17],
which contains 1.2 million training images, 50,000 validation
images, and 150,000 test images across 1,000 categories. We
performed our experiments on ResNet50 across four distinct
seeds, training each model for 450 epochs. Following the
common practice, we report the top-1 classification accuracy
on the validation set.

Considering the computational efficiency of 1D-SWD and
the established presence of 2D-SFD in literature, our focus
is on these methods. We have focused our scope due to
the computational overhead associated with 1D-SFD and 2D-
SWD. Specifically, 1D-SFD leads to a training time multiplier
of 1.77x, while 2D-SWD extends this to 3.12x on ImageNet.



TABLE II
2D SPECTRAL DROPOUT METHODS ON CIFAR-10/100: ACCURACY AND

TRAINING TIME MULTIPLIER (TTM).

Method CIFAR-10 Acc. CIFAR-100 Acc. TTM

R18 94.04%± 0.08% 76.47%± 0.20% 1.00x
R18 + 2D-SFD 94.29%± 0.19% 77.21%± 0.31% 1.59x
R18 + 2D-SWD 94.22%± 0.16% 77.22%± 0.15% 2.22x

R34 93.69%± 0.30% 77.07%± 0.45% 1.00x
R34 + 2D-SFD 93.97%± 0.26% 77.49%± 0.28% 1.30x
R34 + 2D-SWD 94.03%± 0.31% 77.39%± 0.36% 2.21x

R50 93.31%± 0.36% 76.18%± 0.76% 1.00x
R50 + 2D-SFD 93.59%± 0.40% 77.63%± 0.55% 1.87x
R50 + 2D-SWD 93.62%± 0.31% 77.98%± 0.10% 2.91x

V16 93.27%± 0.12% 72.48%± 0.35% 1.00x
V16 + 2D-SFD 93.48%± 0.12% 72.52%± 0.46% 1.12x
V16 + 2D-SWD 93.50%± 0.21% 72.63%± 0.11% 1.88x

TABLE III
COMPARISON OF DROPOUT TECHNIQUES ON IMAGENET: TOP-1

ACCURACY AND TRAINING TIME MULTIPLIER (TTM).

Method Top-1 Accuracy TTM

ResNet50 (Baseline) 76.87%± 0.15% 1.00x
ResNet50 + D2D 77.27%± 0.12% 1.13x
ResNet50 + DB 77.40%± 0.11% 1.21x
ResNet50 + 1D-SWD 77.47%± 0.05% 1.28x
ResNet50 + 2D-SFD 77.87%± 0.06% 2.04x

We also include a comparison with modern dropout tech-
niques such as dropblock (DB) and dropout2d (D2D) [10].
Comprehensive implementation details are provided in the
Appendix, Section VII-E.

1) Results: Table III shows the effectiveness of our ap-
proach on ImageNet. For ResNet50, the application of 1D-
SWD resulted in an accuracy increase of 0.60%pt compared
to the baseline. It surpasses both DB and D2D. For ResNet50,
the application of 1D-SWD resulted in an accuracy increase
of 0.60%pt.

While 2D-SFD shows the highest performance gain, it
requires tuning two hyperparameters, which is not needed
with 1D-SWD. Additionally, the runtime overhead of 2D-
SFD, noted as more than double (2.04 times) the baseline for
ResNet50 on ImageNet, is significantly higher than the more
manageable increase of approximately 1.28 times overhead of
1D-SWD. This difference not only highlights the computa-
tional efficiency of 1D-SWD but also its attractiveness as a
simplified alternative to 2D-SFD.

C. Object Detection on Pascal VOC

We compared SWD in both 1D and 2D forms to the
established 2D-SFD and its one-dimensional counterpart on
object detection. We tested these methods on the PASCAL
VOC dataset [32], which includes a diverse set of 20 object
categories. We use the mmobjectdetection library [35] to train
our models.

We used the Faster R-CNN framework [2] and integrated
our Spectral Wavelet Dropout approach to evaluate its impact

TABLE IV
PERFORMANCE OF SPECTRAL DROPOUT METHODS IN OBJECT

DETECTION ON PASCAL VOC: MEAN AVERAGE PRECISION (MAP),
AVERAGE PRECISION AT 50% IOU (AP50), AND TRAINING TIME

MULTIPLIER (TTM). THE TRAINING OVERHEAD IS PRESENTED AS A
FACTOR OF THE BASELINE MODEL’S COMPUTATIONAL TIME, WHERE

“1.00X” REPRESENTS THE BASELINE.

Method mAP (%) AP50 (%) TTM

FRCNN (Baseline) 77.61%± 0.27% 77.62%± 0.26% 1.00x

FRCNN + 1D-SFD 77.70%± 0.17% 77.68%± 0.17% 3.39x
FRCNN + 1D-SWD 78.01%± 0.16% 78.00%± 0.14% 1.58x

FRCNN + 2D-SFD 77.86%± 0.11% 77.86%± 0.10% 4.07x
FRCNN + 2D-SWD 78.17%± 0.18% 78.16%± 0.19% 3.51x

on model performance. We selected Mean Average Precision
(mAP) and Average Precision at 50% Intersection over Union
(AP50) as our main metrics. Further implementation details
can be found in the Appendix, Section VII-F.

Table IV shows the experimental results. The 2D-SWD vari-
ant achieved the highest mAP and AP50 scores, demonstrating
its superiority over SFD in object detection. Notably, 1D-SWD
also showed a performance improvement while having much
lower training overhead compared to 1D/2D-SFD and 2D-
SWD. Both 1D-SWD and 2D-SWD outperformed their 1D
and 2D Spectral Fourier Dropout counterparts. This shows the
effectiveness of SWD as an alternative regularization method
for object detection.

V. ANALYSIS AND DISCUSSION

A. Hyperparameters

For detailed outcomes of the hyperparameter optimization
on CIFAR-10 and CIFAR-100, refer to Tables VIII and IX
in Appendix VII-H. Results for ImageNet are presented in
Table X. For SWD it is preferred to use a small dropout rate,
i.e. p = {0.1, 0.2}. Increasing the dropout rate resulted in a
decrease in the overall performance. In contrast to SWD, SFD
needs different dropout and pruning rates for each setting.

B. Frequency Dropout - 1D vs 2D

The decision to use one-dimensional (1D) or two-
dimensional (2D) Spectral Dropout, which includes both
Wavelet and Fourier approaches, depends on their decompo-
sition strategy. 1D methods target horizontal features, which
are effectively for tasks with dominant horizontal patterns.
Conversely, 2D techniques analyze both vertical and horizontal
dimensions, therefore enhancing feature extraction at the cost
of increased computational demand. Our findings show a
trade-off between computational efficiency and performance
enhancement that is influenced by the complexity of the task.
For less demanding tasks, where the trade-off is minimal,
we recommend the use of 1D Spectral Dropout due to its
efficiency. In more challenging the choice between 2D Spectral
Dropout for optimal performance and 1D Spectral Dropout as
a more computationally efficient regularization method must
be considered carefully.



C. Computational Complexity Analysis

We compare the computational complexities and runtime
performances of Spectral Wavelet Dropout and Spectral
Fourier Dropout. Let n be the number of rows/columns of
a square matrix. Theoretically, 2D-SFD and 1D-SFD have
complexities of O(n2 log n) for frequency transformations,
indicating higher computational demands as the feature map
sizes increase [36]. Conversely, SWD, in both 1D and 2D
forms, operates at a reduced complexity of O(n2). This
improves efficiency due to a direct correlation with the pixel
count.

Details on the runtime overheads can be found in the “Train
Time Multiplier” column across Tables I, II, III, and IV. The
runtime overhead of the 2D-SWD variant exceed that of 2D
Spectral Fourier Dropout, likely due to less optimized wavelet
transform algorithms or suboptimal GPU utilization. Notably,
the Fourier Transform, known for its higher theoretical com-
putational demands, showed improved efficiency on smaller
datasets. This is attributed to the utilization of optimized GPU-
accelerated libraries.

Our findings show that 1D-SWD consistently has a lower
runtime overheads than both 1D and 2D-SFD on image
classification and object detection task. Note that the runtime
overhead by SWD is limited to the training phase and does
not affect the inference time.

D. Dropping Fourier Coefficients vs Frequency Bands

A main difference between SWD and SFD is the type of the
dropped values. Specifically, SWD targets frequency bands of
a wavelet transformed feature map, while SFD drops random
Fourier coefficients in a Fourier-transformed feature map.

An advantage of dropping specific frequency bands is the
possibility to control the level of regularization. By choosing
specific frequency bands of the wavelet decomposition and
adjusting the dropout rate, one can fine-tune the regularization
strength based on the characteristics of the task and the desired
model complexity.

In contrast to the Fourier transform, the Wavelet transform
allows a multi-resolution analysis. Dropping the frequency
bands forces the model to use information at different fre-
quency scales.

Moreover, not all Fourier coefficients contribute equally to
the information content of the image. Randomly dropping
coefficients may unintentionally remove important frequency
components, leading to a potential loss of crucial information.
Furthermore, such random elimination could also have no
effect at all, if the Fourier coefficients do not contribute to
the information content of the image.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced Spectral Wavelet Dropout,
a novel regularization technique designed to improve the
generalization capabilities of CNNs by randomly dropping
frequency bands in wavelet-transformed feature maps. Spectral
Wavelet Dropout is presented in two variants: 1D-SWD and
2D-SWD, which use different wavelet transformations.

Empirical evaluations show that Spectral Wavelet Dropout
matches and in some cases surpasses Spectral Fourier Dropout
on datasets such as CIFAR-10, CIFAR-100 and ImageNet.
Notably, the 1D variant of SWD achieves this competitive
performance with a significant reduction in computational
complexity, distinguishing it from both its 2D counterpart and
SFD alternatives. In addition, SWD simplifies optimization
by using just one hyperparameter, unlike the two required by
SFD. For object detection tasks on the Pascal VOC dataset,
both the 1D and 2D variants of Spectral Wavelet Dropout
perform better than their Spectral Fourier Dropout counterparts
while requiring less computation. Moreover, SWD requires
only one hyperparameter instead of two in SFD.

While our current investigation has shown promising results,
the full potential of SWD remains to be fully unlocked.
Future research directions include the investigation of different
wavelet functions, exploration of adaptive wavelets, and deeper
analysis of decomposition levels to further refine the efficacy
of SWD. Additionally, optimizing the handling of border
distortions and exploring selective regularization based on
frequency band energy distribution could provide avenues for
enhancing the performance and applicability of SWD.
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VII. APPENDIX

A. Visualizing 1D Spectral Wavelet Dropout

Figure 3 illustrates the 1D Spectral Wavelet Dropout applied
to a feature map X ∈ RC×H×W . The process begins by
flattening the feature map along each channel, resulting in
X̂ ∈ RC×H·W . Then a three-level one-dimensional discrete
wavelet decomposition (1D-DWT) is performed on X̂ , result-
ing in approximation and detailed frequency coefficients across
three levels. They are also referred as frequency bands. In the
next phase, 1D-SWD randomly drops detailed wavelet bands
using a dropout probability p. This introduces regularization.
This regularization is shown in Figure 3 by the dropping of
the Level 2 coefficients. The feature map is transformed back
into the spatial domain using an inverse 1D-DWT. Finally, it
is reshaped for input into the subsequent network layer.

B. Implementing the 2D Spectral Wavelet Dropout Algorithm

At the core of the 2D-SWD, as detailed in Algorithm 2,
is the application of the 2D Discrete Wavelet Transform (2D-
DWT). This transformation process decomposes each channel
of the input feature map into four distinct sub-bands: LL (low-
low), LH (low-high), HL (high-low), and HH (high-high).
These represent the approximation, horizontal detail, vertical
detail, and diagonal detail components.

Following the decomposition, a dropout mask is sampled
using a dropout probability p. This mask is applied to the
detail coefficients (LH , HL, and HH). This drops a portion
of the wavelet coefficients to introduce regularization. The
approximation coefficients (LL) are preserved to maintain
the overall structure of the image. Scaling the rest of the
coefficients by a factor of (1 − p)−1 compensates for the
dropout’s reduction of signal energy.

The final step involves transforming the feature map back
into the spatial domain using the inverse 2D-DWT.

Algorithm 2: Spectral Wavelet Dropout - 2D-SWD
Parameter: dropout probability = p ∈ (0, 1)
Input: X ∈ RB×C×H×W

Output: X̂ ∈ RB×C×H×W

// Save size of X
1 size = X .size()
// Compute the 1-level 2D-DWT for

each channel using the db3-wavelet
2 LL,LH,HL,HH = 2D-DWT(X, J = 1,wave=’db3’)
// Create mask for dropout

3 dropout mask = Bernoulli(3, prob = 1− p)
// Wavelet Dropout

4 LH = LH · dropout mask[0]/(1− p)
5 HL = HL · dropout mask[1]/(1− p)
6 HH = HH · dropout mask[2]/(1− p)
// Compute inverse Wavelet

transformation
7 X̂ = 2D-IDWT([LL,LH,HL,HH],wave=’db3’)

C. In-Depth Analysis of the Discrete Wavelet Transform in
SWD

Figure 4 illustrates the frequency domain representation of
the Discrete Wavelet Transform. It demonstrates the DWT’s
ability to partition a signal into multiple frequency compo-
nents.

D. Detailed CIFAR-10/100 Training Procedures

Our CIFAR experiments used PyTorch 1.10.1 [37] on an
Nvidia GeForce 1080Ti GPU. We used the same training setup
for all models, with a batch size of 128 and the SGD optimizer
with a momentum of 0.9. The initial learning rate was set
to 0.1, with adjustments based on the dataset: for CIFAR-
10, it was reduced by a factor of 0.1 at epochs 90 and 136,
along with a weight decay of 1e − 4 [1]; for CIFAR-100,
it was reduced by 0.2 at epochs 60, 120, and 160, using
a weight decay of 5e − 4. These parameter settings match
those recommended in [1], without further hyperparameter
optimization. Data augmentation techniques included random
cropping (size 32 with padding 4), random horizontal flipping,
and normalization, as outlined in [7], with normalization being
the only preprocessing step for the test set. Network initializa-
tion followed the Kaiming uniform approach [38], with VGG’s
linear layers similarly initialized and its convolutional layers
set to a Gaussian distribution (µ = 0, σ =

√
2/n).

E. Detailed ImageNet Training Procedures

In our experiments, we used PyTorch 1.10.1 [37] with four
Nvidia GeForce 1080Ti GPUs. All models were trained with
the SGD optimizer, set with a momentum of 0.9 and an initial
learning rate of 0.1, which was reduced by a factor of 0.1 at
epochs 75, 150, 225, 300, and 375. A weight decay factor of
1e − 4 was applied, and the batch size was standardized at
128.

For data augmentation, the training dataset was randomly
cropped to 224 × 224, randomly flipped horizontally, and
normalized. The validation dataset was resized to 256× 256,
center cropped to 224 × 224, and normalized. Our setup
matches the configuration specified in the PyTorch ImageNet
training example2.

F. Implementation Details on PASCAL VOC using Faster R-
CNN

In our object detection experiments on the PASCAL VOC
dataset, we use the mmobjectdetection library [35] for setting
up and training our models. This section outlines the key
implementation details to ensure our results can be reproduced.

a) Model Configuration: We set up our Faster R-CNN
[2] with a ResNet-50 backbone and a Feature Pyramid Net-
work (FPN) for multi-scale feature extraction.

2https://github.com/pytorch/examples/blob/main/imagenet

https://github.com/pytorch/examples/blob/main/imagenet


Drop Detailed
Level Coefficients

1D-SWD

1D-IDWT Output
Feature Map

Level 2
Coefficients

Level 1
Coefficients

Approximation
Coefficients

Level 3
Coefficients

Input
Feature Map

3-level
1D-DWT

Level 2
Coefficients

Level 1
Coefficients

Approximation
Coefficients

Level 3
Coefficients

Flattening Reshaping
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inverse 1D-DWT.

0 frequency

Fig. 4. This figure shows the Discrete Wavelet Transform dividing a signal
into distinct frequency bands. Such multi-resolution analysis is important for
our Spectral Wavelet Dropout method, as it allows randomly dropping of
information across different scales.

b) Data Preprocessing and Augmentation: Our prepro-
cessing pipeline includes several steps to prepare images for
object detection. First, images are loaded and annotations are
retrieved. Then, images are resized to (1000, 600), keeping
their original aspect ratio. To augment the data and introduce
variability, we randomly flip images horizontally with a 50%
probability. This augmentation is applied uniformly across the
training dataset to enhance model robustness and generaliza-
tion. For validation, images are resized in the same way but
without random flips to keep evaluation consistent.

c) Training Configuration: The model is trained on the
combined trainval sets of VOC2007 and VOC2012 and evalu-
ated on the VOC2007 validation set. We use a batch size of 2.
The SGD optimizer is used with momentum and weight decay,
and the learning rate is adjusted according to a predefined
schedule. We use the mean Average Precision (mAP) metric,
calculated with the ‘11points‘ interpolation method, as the
evaluation metric.

d) Spectral Dropout Integration: All Spectral Dropout
methods were applied within the third block of the ResNet50
backbone.

TABLE V
PERFORMANCE ON CIFAR-10 WITH 1D-SWD TARGETING LEVEL 3

DETAIL COEFFICIENTS.

Method Accuracy

ResNet18 + 1D-SWD3 94.05%± 0.21%

ResNet34 + 1D-SWD3 94.26%± 0.23%

ResNet50 + 1D-SWD34 94.00%± 0.18%

TABLE VI
PERFORMANCE ON CIFAR-100 WITH 1D-SWD TARGETING LEVEL 3

DETAIL COEFFICIENTS.

Method Accuracy

ResNet18 + 1D-SWD4 77.11%± 0.21%

ResNet34 + 1D-SWD4 77.32%± 0.41%

ResNet50 + 1D-SWD4 77.42%± 0.47%

G. Frequency Band Impact Analysis with 1D-SWD

We analyzed the effects of explicitly dropping different
frequency components: the approximation coefficients, and
level 1, 2, and 3 detail coefficients, both individually and in
combinations. Our results are shown in Tables V, VI, and
VII. The naming convention of model configurations, such
as “ResNet50 + 1D-SWD34”, indicates where 1D-SWD is
applied within the ResNet50 architecture, showing the specific
stages where frequency band manipulation happens.

They indicate a significant performance improvement when
only level 3 detail coefficients are dropped across CIFAR-
10/100 and ImageNet datasets. Our analysis shows that
dropping approximation coefficients, which capture the low-
frequency, smoothed parts of the signal, is not effective. These
coefficients contain important information about the signal’s
overall structure, whereas detail coefficients correspond to
high-frequency variations and potential noise.



TABLE VII
PERFORMANCE ON IMAGENET WITH 1D-SWD TARGETING LEVEL 3

DETAIL COEFFICIENTS.

Method Top-1 Accuracy

ResNet50 + 1D-SWD4 77.51%± 0.11%

H. Hyperparameters

1) Method Parameters: The hyperparameters for our CI-
FAR and ImageNet experiments are shown in Tables VIII,
IX, and X. We found that lower dropout rates, specifically
p = {0.1, 0.2}, work best for both 1D and 2D Spectral Wavelet
Dropout. Higher dropout rates led to lower performance.

In contrast, Spectral Fourier Dropout in both 1D and 2D
forms required different dropout and pruning rates, showing
the need for specific hyperparameter tuning for each setting.

Figures 5 and 6 show how ResNet50 performance on
CIFAR-10 and CIFAR-100 varies with different hyperparam-
eters for 2D-SFD. This underscores the importance of a
comprehensive hyperparameter search for SFD.
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Fig. 5. Hyperparameter search results for ResNet50 with 2D-SFD on CIFAR-
10, illustrating the impact of various configurations on model performance.
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Fig. 6. Hyperparameter search results for ResNet50 with 2D-SFD on CIFAR-
100, demonstrating the performance variability across different hyperparam-
eter settings.

2) Positional Analysis: We did an ablation study to investi-
gate the effect of the position of 1D-SWD within the ResNets.
We did the same ablation study for 1D-SFD, 2D-SWD and 2D-
SFD. Similar to other dropping methods like DropBlock [10] it
is preferred to insert the frequency dropout methods in deeper
layers, e.g. for ResNets in the modules 3 or 4. The Tables XI

TABLE VIII
HYPERPARAMETERS FOR CIFAR-10 AND CIFAR-100 EXPERIMENTS

WITH 1D SPECTRAL METHODS.

Model CIFAR-10 CIFAR-100

ResNet18 + 1D-SWD p = 0.1 p = 0.1
ResNet18 + 1D-SFD p = 0.1, η = 0.1 p = 0.2, η = 0.2

ResNet34 + 1D-SWD p = 0.2 p = 0.1
ResNet34 + 1D-SFD p = 0.3, η = 0.5 p = 0.1, η = 0.0

ResNet50 + 1D-SWD p = 0.2 p = 0.1
ResNet50 + 1D-SFD p = 0.2, η = 0.1 p = 0.3, η = 0.1

VGG16 + 1D-SWD p = 0.1 p = 0.2
VGG16 + 1D-SFD p = 0.3, η = 0.4 p = 0.4, η = 0.1

TABLE IX
HYPERPARAMETERS FOR CIFAR-10 AND CIFAR-100 EXPERIMENTS

WITH 2D SPECTRAL METHODS.

Model CIFAR-10 CIFAR-100

ResNet18 + 2D-SWD p = 0.1 p = 0.2
ResNet18 + 2D-SFD p = 0.1, η = 0.2 p = 0.1, η = 0.1

ResNet34 + 2D-SWD p = 0.2 p = 0.2
ResNet34 + 2D-SFD p = 0.4, η = 0.3 p = 0.2, η = 0.0

ResNet50 + 2D-SWD p = 0.2 p = 0.1
ResNet50 + 2D-SFD p = 0.4, η = 0.4 p = 0.2, η = 0.0

VGG16 + 2D-SWD p = 0.5 p = 0.2
VGG16 + 2D-SFD p = 0.1, η = 0.4 p = 0.4, η = 0.5

and XII show in which module the frequency dropout methods
are inserted in our experiments.

The regularization methods can be too harsh when applied
to higher resolution feature maps in earlier modules. Inserting
the frequency dropout methods in the fourth module generally
led to the best results. For smaller networks on easier tasks
(e.g. ResNet18 on CIFAR10) it is preferred to insert them in
the third module. This may be attributed due to the shallower
architecture, which might need more regularization in the third
module to prevent overfitting to noise or irrelevant details. In
deeper ResNet variants, the increased model capacity enables
them to capture finer details and patterns in the fourth module,
making 1D-SWD more effective at this stage.

We also analyzed the effect of the position of 1D-SWD
within the basic or bottleneck buildings blocks. We in-
vestigated inserting SWD before and after the convolution
layers within the buildings blocks. Both ways increase the
performance. However, the optimal position depends on the
resolution of the feature maps.

For high-resolution images like ImageNet, 1D-SWD should
be inserted before each convolution layer, following the se-
quence: 1D-SWD - Conv - BN - ReLU, including in the
residual connection (1D-SWD - Conv - BN). This architecture
forces the network to focus on various frequency bands.

For low-resolution images like CIFAR, it is preferred to
place 1D-SWD after the convolution layers (Conv - 1D-SWD
- BN - ReLU), both in the main and residual block. This allows
the network to first extract features through convolution, which



TABLE X
HYPERPARAMETERS OF EXPERIMENTS ON IMAGENET.

Model ImageNet

ResNet50 + 1D-SWD p = 0.2
ResNet50 + 2D-SFD p = 0.2, η = 0.1

are then manipulated using 1D-SWD.
For both low- and high-resolution images, the 2D-SWD

is strategically positioned before each convolutional layer to
optimize performance.

TABLE XI
POSITION OF SPECTRAL DROPOUT ON CIFAR-10/100 - 1D.

Model CIFAR-10 CIFAR-100

R18 + 1D-SFD 4 4
R18 + 1D-SWD 3 4

R34 + 1D-SFD 4 4
R34 + 1D-SWD 3 4

R50 + 1D-SFD 4 4
R50 + 1D-SWD 4 4

V16 + 1D-SWD 4 4

TABLE XII
POSITION OF SPECTRAL DROPOUT ON CIFAR-10/100 - 2D.

Model CIFAR-10 CIFAR-100

R18 + 2D-SFD 4 4
R18 + 2D-SWD 3 4

R34 + 2D-SFD 4 4
R34 + 2D-SWD 4 4

R50 + 2D-SFD 4 4
R50 + 2D-SWD 4 4

V16 + 2D-SWD 4 4
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